Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
J Headache Pain ; 25(1): 36, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481170

ABSTRACT

BACKGROUND: The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS: CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS: Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS: Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.


Subject(s)
Calcitonin Gene-Related Peptide , Receptors, Calcitonin , Rats , Female , Male , Humans , Mice , Animals , Calcitonin Gene-Related Peptide/genetics , Ganglia, Spinal , Islet Amyloid Polypeptide/genetics , In Situ Hybridization, Fluorescence , Pain , RNA, Messenger
2.
Ann Neurol ; 89(6): 1157-1171, 2021 06.
Article in English | MEDLINE | ID: mdl-33772845

ABSTRACT

OBJECTIVE: Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS: Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS: Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION: Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.


Subject(s)
Amylin Receptor Agonists/adverse effects , Islet Amyloid Polypeptide/adverse effects , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Animals , Calcitonin Gene-Related Peptide/adverse effects , Cross-Over Studies , Double-Blind Method , Humans , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Trigeminal Ganglion/metabolism
3.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430275

ABSTRACT

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.


Subject(s)
Migraine Disorders , Pituitary Adenylate Cyclase-Activating Polypeptide , Humans , Rats , Animals , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Trigeminal Ganglion/metabolism , Gene Expression , Antibodies , Migraine Disorders/genetics
4.
Neuromodulation ; 24(7): 1237-1246, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34013608

ABSTRACT

OBJECTIVES: To assess the efficacy of transcutaneous electrical nerve stimulation (TENS) for neurogenic bladder dysfunction secondary to spinal cord injury (SCI). MATERIALS AND METHODS: A systematic search of MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane libraries up to February 2021 was performed using PRISMA methodology. All randomized controlled trials (RCTs) that studied TENS for neurogenic bladder in a SCI population were included. The primary outcomes of interest were maximum cystometric capacity (MCC) and maximum detrusor pressure (Pdet). Meta-analysis was conducted with RevMan v5.3. RESULTS: Six RCTs involving 353 participants were included. Meta-analysis showed that TENS significantly increased MCC (standardized mean difference 1.11, 95% confidence interval [CI] 0.08-2.14, p = 0.03, I2  = 54%) in acute SCI. No benefits were seen for maximum Pdet. TENS was associated with no major adverse events. CONCLUSIONS: TENS may be an effective, safe intervention for neurogenic bladder dysfunction following SCI. Further studies are essential to confirm these results and more work is required to determine optimal stimulation parameters and duration of the treatment.


Subject(s)
Spinal Cord Injuries , Transcutaneous Electric Nerve Stimulation , Urinary Bladder, Neurogenic , Humans , Randomized Controlled Trials as Topic , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy , Urinary Bladder, Neurogenic/etiology , Urinary Bladder, Neurogenic/therapy
5.
Cell Biol Int ; 44(1): 343-351, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31498530

ABSTRACT

Neuroinflammatory disorders such as Alzheimer's and Parkinson's diseases are characterised by chronic inflammation and loss of vascular integrity. Bradykinin 1 receptor (B1R) activation has been implicated in many neuroinflammatory diseases, but the contribution of B1R to inflammation and vascular breakdown is yet to be determined. As a result, the present study evaluated the effect of B1R stimulation using Des-Arg-9-BK on the cytokine profile and junctional properties of human cerebral microvascular endothelial cells (hCMVECs). Results showed that stimulation of B1R receptors increased secretion of pro-inflammatory cytokines, interleukin-6 (IL-6), IL-8, intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1), but decreased the expression of vascular endothelial growth factor (VEGF), a cytokine and growth factor required for maintenance of the vasculature. B1R stimulation also resulted in the loss of occludin expression at tight junctions with no change in VE-cadherin expression. There was also a significant increase in permeability to Evans blue albumin, suggesting an increase of vascular permeability. Taken together, these results suggest that B1R activation that occurs in neuroinflammatory diseases may contribute to both the inflammation and loss of blood-brain barrier integrity that is characteristic of these diseases.

6.
Int J Mol Sci ; 21(21)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33139674

ABSTRACT

We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFß were also produced by the melanoma cells. Whilst TGFß-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations, which most likely favour support or survival of the cancer cells. Most of these, except for TGFß-1 and the C-terminal fragment of ANGPTL-4, did not have an impact on the integrity of the brain endothelial cells.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , Biosensing Techniques/methods , Blood-Brain Barrier/drug effects , Brain/pathology , Cell Line , Cell Line, Tumor , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Cytokines/genetics , Flow Cytometry/methods , Humans , Immunoassay/methods , Melanoma/genetics , Melanoma/pathology , Proteome/metabolism , Proteomics/methods , Skin Neoplasms/genetics , Skin Neoplasms/pathology
7.
Gene Ther ; 26(5): 198-210, 2019 05.
Article in English | MEDLINE | ID: mdl-30962538

ABSTRACT

Adeno-associated viral (AAV) vectors are a promising system for transgene delivery into the central nervous system (CNS) based on their safety profile and long-term gene expression. Gene delivery to the CNS has largely been neuron centric but advances in AAV technology are facilitating the development of approaches to enable transduction of glial cells. Considering the role of astrocytes in the on-going secondary damage in spinal cord injury (SCI), an AAV vector that targets astrocytes could show benefit as a potential treatment. Transduction efficiency, transgene expression and cellular tropism were compared for the AAV serotypes AAV5, AAV9 and AAVRec2 whereby destabilised yellow fluorescent protein (dYFP) was controlled by the GFAP or the truncated GfaABC1D promoter. The vectors were tested in primary spinal cord astrocyte cell culture, spinal cord slice culture and an in vivo model of SCI contusion. AAV5 resulted in greater transduction efficiency, transgene expression and astrocyte tropism compared with AAV9 and AAVRec2. In a rodent model of SCI, robust transgene expression by AAV5-GFAP/GfaABC1D-dYFP was observed through 12 mm of spinal cord tissue and expression was largely restricted to astrocytes. Thus, AAV5-GFAP/GfaABC1D carries the potential as a potential gene therapy vector, particularly for transducing astrocytes in the damaged spinal cord.


Subject(s)
Astrocytes/metabolism , Dependovirus/genetics , Genetic Therapy/methods , Spinal Cord Injuries/therapy , Animals , Cells, Cultured , Gene Transfer Techniques , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley
8.
Biomed Microdevices ; 21(3): 77, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31346791

ABSTRACT

Microfluidics-based gradient generators have been used for various biological applications, specifically chemotaxis in cell culture. However, the ability to generate and maintain long term gradients alongside the ability to quickly switch solutions is a challenge of the current microfabricated systems. In this study, a simple flow-driven microfluidic system was developed to achieve long-term stable concentration gradients. Computational modelling was performed to highlight the fluid dynamics as well as to verify the ability of maintaining stable gradients over 7 days. Numerical simulation was analysed to evaluate the static pressure, velocity magnitude and wall shear stress distribution in the chamber. A microdevice fabricated with polydimethylsiloxane (PDMS), using a standard soft lithography technique is presented. It consists of eight parallel microchannels (5 µm × 30 µm × 1,800 µm) linking source and sink chambers; a syringe pump drives fluid through the sink chamber, advection/diffusion from source to sink establishes a gradient. A gradient of a fluorescent dye was generated under the low flow control at 1-10 µl/h of a simple syringe pump equipped with a pulsation damper that was comparable to a pulseless microfluidic pump. Concentration gradients were formed in 1 h and stable from 2 h out to 5 days and consuming less than 1.0 ml of solution. This study focuses on a novel solution to achieve a long-term microfluidic gradient generator using simple engineering techniques of biomedical microdevices.


Subject(s)
Lab-On-A-Chip Devices , Calibration , Computer Simulation , Equipment Design , Time Factors
9.
Biochim Biophys Acta Biomembr ; 1860(1): 224-236, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28347700

ABSTRACT

A common cause of mortality and long-term adult disability, cerebral ischemia or brain ischemia imposes a significant health and financial burden on communities worldwide. Cerebral ischemia is a condition that arises from a sudden loss of blood flow and consequent failure to meet the high metabolic demands of the brain. The lack of blood flow initiates a sequelae of cell death mechanisms, including the activation of the inflammatory pathway, which can ultimately result in irreversible brain tissue damage. In particular, Connexins and Pannexins are non-selective channels with a large pore that have shown to play time-dependent roles in the perpetuation of ischaemic injury. This review highlights the roles of Connexin and Pannexin channels in cell death mechanisms as a promising therapeutic target in cerebral ischemia, and in particular connexin hemichannels which may contribute most of the ATP release as a result of ischemia as well as during reperfusion. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Subject(s)
Adenosine Triphosphate/metabolism , Brain Ischemia/metabolism , Cerebral Cortex/metabolism , Connexins/metabolism , Ion Channels/metabolism , Animals , Brain Ischemia/pathology , Cerebral Cortex/pathology , Humans
10.
J Neuroinflammation ; 15(1): 138, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29751771

ABSTRACT

BACKGROUND: Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. METHODS: To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1ß, TNFα, LPS, IFN-γ, TGF-ß1, IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1ß. RESULTS: Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1ß. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1ß, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. CONCLUSIONS: Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelial Cells/metabolism , Inflammation Mediators/metabolism , Pericytes/metabolism , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Brain/cytology , Brain/drug effects , Cells, Cultured , Coculture Techniques , Endothelial Cells/drug effects , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/pharmacology , Pericytes/drug effects
11.
Biochim Biophys Acta Gen Subj ; 1861(2): 68-78, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27816754

ABSTRACT

BACKGROUND: Non-selective Connexin43 hemichannels contribute to secondary lesion spread. The hemichannel blocking peptidomimetic Peptide5, derived from the second extracellular loop of the human Connexin43 protein, prevents lesion spread and reduces vascular permeability in preclinical models of central nervous system injury. The molecular mode of action of Peptide5, however, was unknown and is described here. METHODS: Human cerebral microvascular endothelial cells and APRE-19 cells were used. Scrape loading was used to assess gap junction function and hypoxic, acidic ion-shifted Ringer solution induced ATP release used to assess hemichannel function. Peptide modifications, including amino acid substitutions and truncations, and competition assays were used to demonstrate Peptide5 functional specificity and site of action respectively. RESULTS: Peptide5 inhibits Connexin43 hemichannel-mediated ATP release by acting on extracellular loop two of Connexin43, adjacent to its matching sequence within the protein. Precise sequence specificity is important for hemichannel block, but less so for uncoupling of gap junction channels (seen only at high concentrations). The SRPTEKT motif is central to Peptide5 function but on its own is not sufficient to inhibit hemichannels. Both the SRPTEKT motif and Peptide5 reduce gap junction communication, but neither uncoupling below 50%. CONCLUSIONS: Reduced gap junction coupling at high peptide concentrations appears to be relatively non-specific. However, Peptide5 at low concentrations acts upon extracellular loop two of Connexin43 to block hemichannels in a precise, sequence specific manner. GENERAL SIGNIFICANCE: The concentration dependent and sequence specific action of Peptide5 supports its development for the treatment of retinal injury and chronic disease, as well as other central nervous system injury and disease conditions.


Subject(s)
Cerebrum/drug effects , Connexin 43/metabolism , Endothelial Cells/drug effects , Ischemia/drug therapy , Peptides/pharmacology , Reperfusion Injury/drug therapy , Adenosine Triphosphate/metabolism , Cell Line , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Cerebrum/metabolism , Endothelial Cells/metabolism , Gap Junctions/drug effects , Gap Junctions/metabolism , Humans , Ion Channels/metabolism , Ischemia/metabolism , Reperfusion Injury/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/metabolism
12.
Exp Brain Res ; 235(10): 3033-3048, 2017 10.
Article in English | MEDLINE | ID: mdl-28725925

ABSTRACT

Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI.


Subject(s)
Biomimetic Materials/pharmacology , Connexin 43/pharmacology , Spinal Cord Injuries/drug therapy , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/adverse effects , Biomimetic Materials/pharmacokinetics , Connexin 43/administration & dosage , Connexin 43/adverse effects , Connexin 43/pharmacokinetics , Disease Models, Animal , Female , Rats , Rats, Sprague-Dawley
13.
J Neuroinflammation ; 12: 131, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26152369

ABSTRACT

BACKGROUND: The vasculature of the brain is composed of endothelial cells, pericytes and astrocytic processes. The endothelial cells are the critical interface between the blood and the CNS parenchyma and are a critical component of the blood-brain barrier (BBB). These cells are innately programmed to respond to a myriad of inflammatory cytokines or other danger signals. IL-1ß and TNFα are well recognised pro-inflammatory mediators, and here, we provide compelling evidence that they regulate the function and immune response profile of human cerebral microvascular endothelial cells (hCMVECs) differentially. METHODS: We used xCELLigence biosensor technology, which revealed global differences in the endothelial response between IL-1ß and TNFα. xCELLigence is a label-free impedance-based biosensor, which is ideal for acute or long-term comparison of drug effects on cell behaviour. In addition, flow cytometry and multiplex cytokine arrays were used to show differences in the inflammatory responses from the endothelial cells. RESULTS: Extensive cytokine-secretion profiling and cell-surface immune phenotyping confirmed that the immune response of the hCMVEC to IL-1ß was different to that of TNFα. Interestingly, of the 38 cytokines, chemokines and growth factors measured by cytometric bead array, the endothelial cells secreted only 13. Of importance was the observation that the majority of these cytokines were differentially regulated by either IL-1ß or TNFα. Cell-surface expression of ICAM-1 and VCAM-1 were also differentially regulated by IL-1ß or TNFα, where TNFα induced a substantially higher level of expression of both key leukocyte-adhesion molecules. A range of other cell-surface cellular and junctional adhesion molecules were basally expressed by the hCMVEC but were unaffected by IL-1ß or TNFα. CONCLUSIONS: To our knowledge, this is the most comprehensive analysis of the immunological profile of brain endothelial cells and the first direct evidence that human brain endothelial cells are differentially regulated by these two key pro-inflammatory mediators.


Subject(s)
Encephalitis/pathology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Interleukin-1beta/pharmacology , Phenotype , Tumor Necrosis Factor-alpha/pharmacology , Brain/blood supply , Cell Line , Cytokines/metabolism , Encephalitis/metabolism , Endothelial Cells/metabolism , Humans , Immunophenotyping , Intercellular Adhesion Molecule-1/metabolism , Microvessels/drug effects , Microvessels/metabolism , Microvessels/pathology , Tight Junction Proteins/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
14.
Br J Pharmacol ; 181(15): 2655-2675, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38616050

ABSTRACT

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Spinal Cord , Vasoactive Intestinal Peptide , Animals , Spinal Cord/metabolism , Spinal Cord/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/agonists , Humans , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology , Mice , Rats , Signal Transduction/drug effects , Receptors, Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors , Cells, Cultured , Rats, Sprague-Dawley , Male , Mice, Inbred C57BL , Cyclic AMP/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/agonists
15.
Ann Neurol ; 71(1): 121-32, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22275258

ABSTRACT

OBJECTIVE: Connexin hemichannels can open during ischemia, resulting in loss of membrane potential, calcium influx, and release of glutamate. In this study, we tested the hypothesis that opening of hemichannels after cerebral ischemia may contribute to delayed evolution of injury. METHODS: We infused a mimetic peptide that blocks connexin 43 hemichannels into the lateral ventricle of chronically instrumented fetal sheep in utero at 128 ± 1 days gestation (term is 147 days), starting 90 minutes after 30 minutes of severe ischemia induced by reversible bilateral carotid artery occlusion, for either 1 or 25 hours. Sheep were killed 7 days later. RESULTS: Peptide infusion was associated with a graded improvement in recovery of electroencephalographic power after 7 days recovery, from -13 ± 1.9 dB (n = 7) after ischemia-vehicle to -9 ± 1.6 dB (n = 7) after ischemia-short infusion and -5 ± 1.6 dB after ischemia-long infusion (n = 6, p < 0.05). Peptide infusion was associated with reduced seizure activity after ischemia, less frequent status epilepticus (p < 0.05), and earlier return of sleep state cycling (p < 0.05). Ischemia-long infusion (but not ischemia-short infusion) was associated with improved survival of oligodendrocytes in intragyral and periventricular white matter (p < 0.05) and increased brain weight (p < 0.05). Ischemia-long infusion was associated with an intermediate estimate of surviving neurons in the parasagittal cortex of 2.9 ± 0.8 × 10(6), in comparison to sham control (4.3 ± 0.9 × 10(6)) or ischemia-vehicle (1.5 ± 0.4 × 10(6); p < 0.05 vs sham control). INTERPRETATION: These data support the hypothesis that opening of connexin hemichannels is a significant mediator of postischemic white and gray matter dysfunction and injury.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/prevention & control , Connexin 43/antagonists & inhibitors , Fetal Hypoxia/drug therapy , Peptide Fragments/administration & dosage , Animals , Brain Ischemia/physiopathology , Cell Survival/physiology , Connexin 43/physiology , Disease Models, Animal , Electroencephalography , Female , Fetal Hypoxia/metabolism , Fetal Hypoxia/pathology , Gene Targeting , Male , Neurons/pathology , Neurons/physiology , Peptide Fragments/chemical synthesis , Peptide Fragments/therapeutic use , Pregnancy , Seizures/prevention & control , Sheep , Sleep Stages/physiology , Treatment Outcome
16.
Brain ; 135(Pt 2): 506-20, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22345088

ABSTRACT

Connexin43 gap junction protein is expressed in astrocytes and the vascular endothelium in the central nervous system. It is upregulated following central nervous system injury and is recognized as playing an important role in modulating the extent of damage. Studies that have transiently blocked connexin43 in spinal cord injury and central nervous system epileptic models have reported neuronal rescue. The purpose of this study was to investigate neuronal rescue following retinal ischaemia-reperfusion by transiently blocking connexin43 activity using a connexin43 mimetic peptide. A further aim was to evaluate the effect of transiently blocking connexin43 on vascular permeability as this is known to increase following central nervous system ischaemia. Adult male Wistar rats were exposed to 60 min of retinal ischaemia. Treatment groups consisted of no treatment, connexin43 mimetic peptide and scrambled peptide. Retinas were then evaluated at 1-2, 4, 8 and 24 h, and 7 and 21 days post-ischaemia. Evans blue dye leak from retinal blood vessels was used to assess vascular leakage. Blood vessel integrity was examined using isolectin-B4 labelling. Connexin43 levels and astrocyte activation (glial fibrillary acidic protein) were assessed using immunohistochemistry and western blot analysis. Retinal whole mounts and retinal ganglion cell counts were used to quantify neurodegeneration. An in vitro cell culture model of endothelial cell ischaemia was used to assess the effect of connexin43 mimetic peptide on endothelial cell survival and connexin43 hemichannel opening using propidium iodide dye uptake. We found that retinal ischaemia-reperfusion induced significant vascular leakage and disruption at 1-2, 4 and 24 h following injury with a peak at 4 h. Connexin43 immunoreactivity was significantly increased at 1-2, 4, 8 and 24 h post ischaemia-reperfusion injury co-localizing with activated astrocytes, Muller cells and vascular endothelial cells. Connexin43 mimetic peptide significantly reduced dye leak at 4 and 24 h. In vitro studies on endothelial cells demonstrate that endothelial cell death following hypoxia can be mediated directly by opening of connexin43 hemichannels in endothelial cells. Blocking connexin43 mediated vascular leakage using a connexin43 mimetic peptide led to increased retinal ganglion cell survival at 7 and 21 days to levels of uninjured retinas. Treatment with scrambled peptide did not result in retinal ganglion cell rescue. Pharmacological targeting of connexin43 gap junction protein by transiently blocking gap junction hemichannels following injury provides new opportunities for treatment of central nervous system ischaemia.


Subject(s)
Connexin 43/antagonists & inhibitors , Ischemia/drug therapy , Oligopeptides/therapeutic use , Retina/drug effects , Retinal Diseases/drug therapy , Retinal Ganglion Cells/drug effects , Retinal Vessels/drug effects , Animals , Connexin 43/metabolism , Ischemia/metabolism , Ischemia/pathology , Male , Rats , Rats, Wistar , Retina/metabolism , Retina/pathology , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Retinal Vessels/metabolism , Retinal Vessels/pathology
17.
Acta Biomater ; 158: 87-100, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36640949

ABSTRACT

Electrically modulated delivery of proteins provides an avenue to target local tissues specifically and tune the dose to the application. This approach prolongs and enhances activity at the target site whilst reducing off-target effects associated with systemic drug delivery. The work presented here explores an electrically active composite material comprising of a biocompatible hydrogel, gelatin methacryloyl (GelMA) and a conducting polymer, poly(3,4-ethylenedioxythiophene), generating a conducting polymer hydrogel. In this paper, the key characteristics of electroactivity, mechanical properties, and morphology are characterized using electrochemistry techniques, atomic force, and scanning electron microscopy. Cytocompatibility is established through exposure of human cells to the materials. By applying different electrical-stimuli, the short-term release profiles of a model protein can be controlled over 4 h, demonstrating tunable delivery patterns. This is followed by extended-release studies over 21 days which reveal a bimodal delivery mechanism influenced by both GelMA degradation and electrical stimulation events. This data demonstrates an electroactive and cytocompatible material suitable for the delivery of protein payloads over 3 weeks. This material is well suited for use as a treatment delivery platform in tissue engineering applications where targeted and spatio-temporal controlled delivery of therapeutic proteins is required. STATEMENT OF SIGNIFICANCE: Growth factor use in tissue engineering typically requires sustained and tunable delivery to generate optimal outcomes. While conducting polymer hydrogels (CPH) have been explored for the electrically responsive release of small bioactives, we report on a CPH capable of releasing a protein payload in response to electrical stimulus. The composite material combines the benefits of soft hydrogels acting as a drug reservoir and redox-active properties from the conducting polymer enabling electrical responsiveness. The CPH is able to sustain protein delivery over 3 weeks, with electrical stimulus used to modulate release. The described material is well suited as a treatment delivery platform to deliver large quantities of proteins in applications where spatio-temporal delivery patterns are paramount.


Subject(s)
Hydrogels , Polymers , Humans , Polymers/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Drug Delivery Systems , Electricity , Gelatin/chemistry
18.
Front Physiol ; 13: 860037, 2022.
Article in English | MEDLINE | ID: mdl-35620595

ABSTRACT

The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30-40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78-80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.

19.
Biomed Mater ; 17(5)2022 06 15.
Article in English | MEDLINE | ID: mdl-35654031

ABSTRACT

Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin (AG-Gel) hydrogel blends as a bioink for extrusion-based bioprinting. Four different AG-Gel hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the AG-Gel bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the AG-Gel. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the AG-Gel bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed AG-Gel bioinks demonstrated high viability (>90%) after 23 d in culture. This study demonstrates the properties of AG-Gel as a printable and biocompatible material applicable for use as a bioink.


Subject(s)
Bioprinting , Neuroblastoma , Bioprinting/methods , Cell Encapsulation , Gelatin , Humans , Hydrogels , Printing, Three-Dimensional , Sepharose , Tissue Engineering/methods , Tissue Scaffolds
20.
Adv Sci (Weinh) ; 9(20): e2105913, 2022 07.
Article in English | MEDLINE | ID: mdl-35499184

ABSTRACT

Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord. The bioelectronic implant is maintained in rats for a period of 12 weeks. The first subdural recordings of spinal cord activity in freely moving animals are presented; rats are plugged in via a recording cable and allowed to freely behave and move around on a raised platform. Recordings contained multiple distinct voltage waveforms spatially localize to individual electrodes. This device has great potential to monitor electrical signaling in the spinal cord after an injury and in the future, this implant will facilitate the identification of biomarkers in spinal cord injury and recovery, while enabling the delivery of localized electroceutical and chemical treatments.


Subject(s)
Nervous System Physiological Phenomena , Spinal Cord Injuries , Animals , Prostheses and Implants , Rats , Spinal Cord Injuries/therapy , Subdural Space
SELECTION OF CITATIONS
SEARCH DETAIL