ABSTRACT
The high prevalence of inadequate hydration (e.g., hypohydration and underhydration) is concerning given that extreme heat increases excess hospitalizations for fluid/electrolyte disorders and acute kidney injury (AKI). Inadequate hydration may also be related to renal and cardiometabolic disease development. This study tested the hypothesis that prolonged mild hypohydration increases the urinary AKI biomarker product of insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2 ([IGFBP7·TIMP-2]) compared with euhydration. In addition, we determined the diagnostic accuracy and optimal cutoffs of hydration assessments for discriminating positive AKI risk ([IGFBP·TIMP-2] >0.3 (ng/mL)2/1,000). In a block-randomized crossover design, 22 healthy young adults (11 females and 11 males) completed 24 h of fluid deprivation (hypohydrated group) or 24 h of normal fluid consumption (euhydrated group) separated by ≥72 h. Urinary [IGFBP7·TIMP-2] and other AKI biomarkers were measured following the 24-h protocols. Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. Urinary [IGFBP7·TIMP-2] [1.9 (95% confidence interval: 1.0-2.8) vs. 0.2 (95% confidence interval: 0.1-0.3) (ng/mL)2/1,000, P = 0.0011] was markedly increased in hypohydrated versus euhydrated groups. Urine osmolality (area under the curve: 0.91, P < 0.0001) and urine specific gravity (area under the curve: 0.89, P < 0.0001) had the highest overall performance for discriminating positive AKI risk. Optimal cutoffs with a positive likelihood ratio of 11.8 for both urine osmolality and specific gravity were 952 mosmol/kgH2O and 1.025 arbitrary units. In conclusion, prolonged mild hypohydration increased urinary [IGFBP7·TIMP-2] in males and females. Urinary [IGFBP7·TIMP-2] corrected to urine concentration was elevated in males only. Urine osmolality and urine specific gravity may have clinical utility for discriminating positive AKI risk following prolonged mild hypohydration.NEW & NOTEWORTHY This study found that prolonged mild hypohydration in healthy young adults increased the Food and Drug Administration approved acute kidney injury (AKI) biomarker urinary insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2 [IGFBP7·TIMP-2]. Urine osmolality and specific gravity demonstrated an excellent ability to discriminate positive AKI risk. These findings emphasize the importance of hydration in protecting renal health and lend early support for hydration assessment as an accessible tool to assess AKI risk.
Subject(s)
Acute Kidney Injury , Somatomedins , Male , Female , Humans , Young Adult , Tissue Inhibitor of Metalloproteinase-2 , Biomarkers , Acute Kidney Injury/diagnosis , Kidney , Insulin-Like Growth Factor Binding ProteinsSubject(s)
Extreme Heat , Healthy Aging , Autonomic Nervous System , Reflex , Exercise , Muscle, Skeletal , Blood Pressure , Hand StrengthABSTRACT
Insufficient hydration is prevalent among free living adults. This study investigated whether hypohydration alters 1) renal functional reserve, 2) the renal hemodynamic response to the exercise pressor reflex, and 3) urine-concentrating ability during oral protein loading. In a block-randomized crossover design, 22 healthy young adults (11 females and 11 males) underwent 24-h fluid deprivation (Hypohydrated) or 24-h normal fluid consumption (Euhydrated). Renal functional reserve was assessed by oral protein loading. Renal hemodynamics during the exercise pressor reflex were assessed via Doppler ultrasound. Urine-concentrating ability was assessed via free water clearance. Creatinine clearance did not differ at 150 min postprotein consumption between conditions [Hypohydrated: 246 mL/min, 95% confidence interval (CI): 212-280; Euhydrated: 231 mL/min, 95% CI: 196-265, P = 0.2691] despite an elevated baseline in Hypohydrated (261 mL/min, 95% CI: 218-303 vs. 143 mL/min, 95% CI: 118-168, P < 0.0001). Renal artery vascular resistance was not different at baseline (P = 0.9290), but increases were attenuated in Hypohydrated versus Euhydrated at the end of handgrip (0.5 mmHg/cm/s, 95% CI: 0.4-0.7 vs. 0.8 mmHg/cm/s 95% CI: 0.6-1.1, P = 0.0203) and end occlusion (0.2 mmHg/cm/s, 95% CI: 0.1-0.3 vs. 0.4 mmHg/cm/s 95% CI: 0.3-0.6, P = 0.0127). There were no differences between conditions in free water clearance at 150 min postprotein (P = 0.3489). These data indicate that hypohydration 1) engages renal functional reserve and attenuates the ability to further increase creatinine clearance, 2) attenuates increases in renal artery vascular resistance to the exercise pressor reflex, and 3) does not further enhance nor impair urine-concentrating ability during oral protein loading.NEW & NOTEWORTHY Insufficient hydration is prevalent among free living adults. This study found that hypohydration induced by 24-h fluid deprivation engaged renal functional reserve and that oral protein loading did not further increase creatinine clearance. Hypohydration also attenuated the ability to increase renal vascular resistance during the exercise pressor reflex. In addition, hypohydration neither enhanced nor impaired urine-concentrating ability during oral protein loading. These data support the importance of mitigating hypohydration in free living adults.