Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Addict Neurosci ; 32022 Sep.
Article in English | MEDLINE | ID: mdl-36081573

ABSTRACT

Relapse to drug use is one of the major challenges in treating substance use disorders. Exposure to drug-related cues and contexts triggers drug craving, which drives cocaine seeking, and increases the probability of relapse. Clinical and animal studies have shown a progressive intensification of cocaine seeking and craving that develops over the course of abstinence, a phenomenon commonly referred to as incubation of cocaine craving. Although the neurobiology underlying incubation of cocaine craving has been examined - particularly within the context of glutamate plasticity- the extent to which increased cocaine craving engenders mesolimbic dopamine (DA) changes has received relatively little attention. To assess whether incubation of cocaine craving is associated with alterations in DA terminal neurotransmission in the nucleus accumbens core (NAc), we used ex vivo fast scan cyclic voltammetry in female and male rats to assess DA dynamics following short access, long access, or intermittent access to cocaine self-administration followed by 28 days of abstinence. Results indicated that both long access and intermittent access to cocaine produced robust incubation of cocaine craving, which was associated with increases in cocaine potency. In addition, intermittent access self-administration also produced a robust increase in DA uptake rate at baseline. In contrast, short access to cocaine did not engender incubation of cocaine craving, nor produce changes in DA neurotransmission. Together these observations indicate that incubation of cocaine craving coincides with changes in DA transmission, suggesting that underlying changes in mesolimbic DA signaling may contribute to the progressive intensification of drug craving that occurs across periods of abstinence.

2.
Neuropsychopharmacology ; 46(10): 1757-1767, 2021 09.
Article in English | MEDLINE | ID: mdl-33953341

ABSTRACT

A major theme of addiction research has focused on the neural substrates of individual differences in the risk for addiction; however, little is known about how vulnerable populations differ from those that are relatively protected. Here, we prospectively measured dopamine (DA) neurotransmission prior to cocaine exposure to predict the onset and course of cocaine use. Using in vivo voltammetry, we first generated baseline profiles of DA release and uptake in the dorsomedial striatum (DMS) and nucleus accumbens of drug-naïve male rats prior to exposing them to cocaine using conditioned place preference (CPP) or operant self-administration. We found that the innate rate of DA uptake in the DMS strongly predicted motivation for cocaine and drug-primed reinstatement, but not CPP, responding when "price" was low, or extinction. We then assessed the impact of baseline variations in DA uptake on cocaine potency in the DMS using ex vivo voltammetry in naïve rats and in rats with DA transporter (DAT) knockdown. DA uptake in the DMS of naïve rats predicted the neurochemical response to cocaine, such that rats with innately faster rates of DA uptake demonstrated higher cocaine potency at the DAT and rats with DAT knockdown displayed reduced potency compared to controls. Together, these data demonstrate that inherent variability in DA uptake in the DMS predicts the behavioral response to cocaine, potentially by altering the apparent potency of cocaine.


Subject(s)
Cocaine , Animals , Cocaine/pharmacology , Dopamine , Dopamine Uptake Inhibitors/pharmacology , Individuality , Male , Motivation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL