Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Publication year range
1.
J Immunol ; 212(5): 785-800, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38251887

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology. NK cells from NMOSD patients and MG patients with elevated disease burden exhibited reduced ADCC and CD56dimCD16hi NK cells, along with an elevated frequency of CD56dimCD16dim/- NK cells. We determined that ADCC induces a similar phenotypic shift in vitro. Bulk RNA sequencing distinguished the CD56dimCD16dim/- population from the canonical CD56dimCD16hi cytotoxic and CD56hiCD16- immunomodulatory subsets, as well as CD56hiCD16+ NK cells. Multiparameter immunophenotyping of NK cell markers, functional proteins, and receptors similarly showed that the CD56dimCD16dim/- subset exhibits a unique profile while still maintaining expression of characteristic NK markers CD56, CD94, and NKp44. Notably, expression of perforin and granzyme is reduced in comparison with CD56dimCD16hi NK cells. Moreover, they exhibit elevated trogocytosis capability, HLA-DR expression, and many chemokine receptors, including CCR7. In contrast with NMOSD and MG, myelin oligodendrocyte glycoprotein Ab disease NK cells did not exhibit functional, phenotypic, or transcriptomic perturbations. In summary, CD56dimCD16dim/- NK cells are a distinct peripheral blood immune cell population in humans elevated upon prior cytotoxic activity by the CD56dimCD16hi NK cell subset. The elevation of this subset in NMOSD and MG patients suggests prior ADCC activity.


Subject(s)
Antineoplastic Agents , Autoantibodies , Humans , Autoantibodies/metabolism , Myelin-Oligodendrocyte Glycoprotein/metabolism , Killer Cells, Natural , Cytotoxicity, Immunologic , Granzymes/metabolism , Antineoplastic Agents/metabolism
2.
Acta Neuropathol ; 146(2): 319-336, 2023 08.
Article in English | MEDLINE | ID: mdl-37344701

ABSTRACT

Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2ßδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.


Subject(s)
Autoantibodies , Myasthenia Gravis , Humans , Receptors, Cholinergic , Clone Cells , B-Lymphocytes
3.
J Immunol ; 207(8): 2005-2014, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34544801

ABSTRACT

Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.


Subject(s)
Autoantibodies/metabolism , B-Lymphocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin Variable Region/metabolism , Myasthenia Gravis/metabolism , Adult , Aged , Female , Glycosylation , Humans , Male , Middle Aged , Myasthenia Gravis/diagnosis , Phenotype , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Young Adult
4.
Proc Natl Acad Sci U S A ; 117(48): 30649-30660, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199596

ABSTRACT

Myasthenia gravis (MG) is a neuromuscular, autoimmune disease caused by autoantibodies that target postsynaptic proteins, primarily the acetylcholine receptor (AChR) and inhibit signaling at the neuromuscular junction. The majority of patients under 50 y with AChR autoantibody MG have thymic lymphofollicular hyperplasia. The MG thymus is a reservoir of plasma cells that secrete disease-causing AChR autoantibodies and although thymectomy improves clinical scores, many patients fail to achieve complete stable remission without additional immunosuppressive treatments. We speculate that thymus-associated B cells and plasma cells persist in the circulation after thymectomy and that their persistence could explain incomplete responses to resection. We studied patients enrolled in a randomized clinical trial and used complementary modalities of B cell repertoire sequencing to characterize the thymus B cell repertoire and identify B cell clones that resided in the thymus and circulation before and 12 mo after thymectomy. Thymus-associated B cell clones were detected in the circulation by both mRNA-based and genomic DNA-based sequencing. These antigen-experienced B cells persisted in the circulation after thymectomy. Many circulating thymus-associated B cell clones were inferred to have originated and initially matured in the thymus before emigration from the thymus to the circulation. The persistence of thymus-associated B cells correlated with less favorable changes in clinical symptom measures, steroid dose required to manage symptoms, and marginal changes in AChR autoantibody titer. This investigation indicates that the diminished clinical response to thymectomy is related to persistent circulating thymus-associated B cell clones.


Subject(s)
B-Lymphocytes/metabolism , Lymphocyte Count , Myasthenia Gravis/blood , Thymus Gland/metabolism , Adolescent , Adult , Autoantibodies/immunology , B-Lymphocytes/immunology , Biomarkers , Clonal Evolution/genetics , Clonal Selection, Antigen-Mediated , Disease Susceptibility , Female , Humans , Male , Middle Aged , Models, Biological , Myasthenia Gravis/etiology , Radioimmunoassay , Receptors, Cholinergic/immunology , Thymectomy , Thymus Gland/cytology , Thymus Gland/immunology , V(D)J Recombination , Young Adult
5.
Immunol Rev ; 292(1): 90-101, 2019 11.
Article in English | MEDLINE | ID: mdl-31721234

ABSTRACT

A role for B cells in autoimmune diseases is now clearly established both in mouse models and humans by successful treatment of multiple sclerosis and rheumatoid arthritis with anti-CD20 monoclonal antibodies that eliminate B cells. However, the underlying mechanisms by which B cells promote the development of autoimmune diseases remain poorly understood. Here, we review evidence that patients with autoimmune disease suffer from defects in early B-cell tolerance checkpoints and therefore fail to counterselect developing autoreactive B cells. These B-cell tolerance defects are primary to autoimmune diseases and may result from altered B-cell receptor signaling and dysregulated T-cell/regulatory T-cell compartment. As a consequence, large numbers of autoreactive naive B cells accumulate in the blood of patients with autoimmune diseases and may promote autoimmunity through the presentation of self-antigen to T cells. In addition, new evidence suggests that this reservoir of autoreactive naive B cells contains clones that may develop into CD27- CD21-/lo B cells associated with increased disease severity and plasma cells secreting potentially pathogenic autoantibodies after the acquisition of somatic hypermutations that improve affinity for self-antigens.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , Immune Tolerance/immunology , Animals , Autoantigens/immunology , Humans , Lymphocyte Activation/immunology
6.
Curr Opin Neurol ; 35(5): 586-596, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35942663

ABSTRACT

PURPOSE OF REVIEW: This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS: The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY: Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.


Subject(s)
Myasthenia Gravis , Autoantibodies , Humans , Immunotherapy/adverse effects , Receptors, Cholinergic
7.
Transfusion ; 61 Suppl 1: S313-S325, 2021 07.
Article in English | MEDLINE | ID: mdl-34269450

ABSTRACT

BACKGROUND: The current global pandemic has created unprecedented challenges in the blood supply network. Given the recent shortages, there must be a civilian plan for massively bleeding patients when there are no blood products on the shelf. Recognizing that the time to death in bleeding patients is less than 2 h, timely resupply from unaffected locations is not possible. One solution is to transfuse emergency untested whole blood (EUWB), similar to the extensive military experience fine-tuned over the last 19 years. While this concept is anathema in current civilian transfusion practice, it seems prudent to have a vetted plan in place. METHODS AND MATERIALS: During the early stages of the 2020 global pandemic, a multidisciplinary and international group of clinicians with broad experience in transfusion medicine communicated routinely. The result is a planning document that provides both background information and a high-level guide on how to emergently deliver EUWB for patients who would otherwise die of hemorrhage. RESULTS AND CONCLUSIONS: Similar plans have been utilized in remote locations, both on the battlefield and in civilian practice. The proposed recommendations are designed to provide high-level guidance for experienced blood bankers, transfusion experts, clinicians, and health authorities. Like with all emergency preparedness, it is always better to have a well-thought-out and trained plan in place, rather than trying to develop a hasty plan in the midst of a disaster. We need to prevent the potential for empty shelves and bleeding patients dying for lack of blood.


Subject(s)
Blood Banking , Blood Banking/methods , Blood Preservation/methods , Blood Transfusion/methods , COVID-19/epidemiology , Civil Defense , Emergency Service, Hospital , Humans , Pandemics
8.
J Immunol ; 203(6): 1650-1664, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31391234

ABSTRACT

IgD-CD27- double negative (DN) B cells with proinflammatory characteristics are abnormally elevated in a proportion of multiple sclerosis (MS) patients. In this study, the origin and selection characteristics of DN B cells were studied in MS patients and healthy controls (HC). Expression of developmental markers on peripheral blood DN, IgD-CD27+ class-switched memory (CSM) and IgD+CD27- naive B cells of HC (n = 48) and MS patients (n = 96) was determined by flow cytometry. High-throughput adaptive immune receptor repertoire sequencing was performed on peripheral blood DN and CSM B cells of HC and MS patients (n = 3 each). DN B cells from HC and MS patients showed similar phenotypic and Ig repertoire characteristics. Phenotypic analysis indicated a mature state of DN B cells by low CD5, CD10, and CD38 expression. However, the frequency of CD95+ and IgA+ cells was lower in DN versus CSM B cells. DN B cells are Ag experienced, as shown by somatic hypermutation of their Ig genes in adaptive immune receptor repertoire sequencing, although they showed a lower mutation load than CSM B cells. Shared clones were found between DN and CSM B cells, although >95% of the clones were unique to each population, and differences in V(D)J usage and CDR3 physicochemical properties were found. Thus, DN B cells arise in HC and MS patients via a common developmental pathway that is probably linked to immune aging. However, DN and CSM B cells develop through unique differentiation pathways, with most DN B cells representing an earlier maturation state.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin D/immunology , Multiple Sclerosis/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Adaptive Immunity/immunology , Adult , Female , Genes, Immunoglobulin/immunology , Humans , Immunoglobulin Class Switching/immunology , Immunologic Memory/immunology , Male , Middle Aged , Young Adult
9.
J Immunol ; 202(8): 2210-2219, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30824481

ABSTRACT

The aim of this study was to test whether autoantibodies against neurologic surface Ags are found in nonneurologic autoimmune diseases, indicating a broader loss of tolerance. Patient and matched healthy donor (HD) sera were derived from four large cohorts: 1) rheumatoid arthritis (RA) (n = 194, HD n = 64), 2) type 1 diabetes (T1D) (n = 200, HD n = 200), 3) systemic lupus erythematosus (SLE) (n = 200, HD n = 67; neuro-SLE n = 49, HD n = 33), and 4) a control cohort of neurologic autoimmunity (relapsing-remitting multiple sclerosis [MS] n = 110, HD n = 110; primary progressive MS n = 9; secondary progressive MS n = 10; neuromyelitis optica spectrum disorders n = 15; and other neurologic disorders n = 26). Screening of 1287 unique serum samples against four neurologic surface Ags (myelin oligodendrocyte glycoprotein, aquaporin 4, acetylcholine receptor, and muscle-specific kinase) was performed with live cell-based immunofluorescence assays using flow cytometry. Positive samples identified in the screening were further validated using autoantibody titer quantification by serial dilutions or radioimmunoassay. Autoantibodies against neurologic surface Ags were not observed in RA and T1D patients, whereas SLE patients harbored such autoantibodies in rare cases (2/200, 1%). Within the CNS autoimmunity control cohort, autoantibodies against aquaporin 4 and high-titer Abs against myelin oligodendrocyte glycoprotein were, as expected, specific for neuromyelitis optica spectrum disorders. We conclude that neurologic autoantibodies do not cross disease barriers in RA and T1D. The finding of mildly increased neurologic autoantibodies in SLE may be consistent with a broader loss of B cell tolerance in this form of systemic autoimmunity.


Subject(s)
Autoantibodies/immunology , Autoantigens/immunology , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , Nerve Tissue Proteins/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/pathology , Female , HEK293 Cells , Humans , Male , Middle Aged
10.
Brain ; 142(6): 1598-1615, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31056665

ABSTRACT

Neuromyelitis optica spectrum disorders (NMOSD) constitute rare autoimmune disorders of the CNS that are primarily characterized by severe inflammation of the spinal cord and optic nerve. Approximately 75% of NMOSD patients harbour circulating pathogenic autoantibodies targeting the aquaporin-4 water channel (AQP4). The source of these autoantibodies remains unclear, but parallels between NMOSD and other autoantibody-mediated diseases posit compromised B cell tolerance checkpoints as common underlying and contributing factors. Using a well established assay, we assessed tolerance fidelity by creating recombinant antibodies from B cell populations directly downstream of each checkpoint and testing them for polyreactivity and autoreactivity. We examined a total of 863 recombinant antibodies. Those derived from three anti-AQP4-IgG seropositive NMOSD patients (n = 130) were compared to 733 antibodies from 15 healthy donors. We found significantly higher frequencies of poly- and autoreactive new emigrant/transitional and mature naïve B cells in NMOSD patients compared to healthy donors (P-values < 0.003), thereby identifying defects in both central and peripheral B cell tolerance checkpoints in these patients. We next explored whether pathogenic NMOSD anti-AQP4 autoantibodies can originate from the pool of poly- and autoreactive clones that populate the naïve B cell compartment of NMOSD patients. Six human anti-AQP4 autoantibodies that acquired somatic mutations were reverted back to their unmutated germline precursors, which were tested for both binding to AQP4 and poly- or autoreactivity. While the affinity of mature autoantibodies against AQP4 ranged from modest to strong (Kd 15.2-559 nM), none of the germline revertants displayed any detectable binding to AQP4, revealing that somatic hypermutation is required for the generation of anti-AQP4 autoantibodies. However, two (33.3%) germline autoantibody revertants were polyreactive and four (66.7%) were autoreactive, suggesting that pathogenic anti-AQP4 autoantibodies can originate from the pool of autoreactive naïve B cells, which develops as a consequence of impaired early B cell tolerance checkpoints in NMOSD patients.


Subject(s)
Aquaporin 4/genetics , Autoantibodies/immunology , B-Lymphocytes/immunology , Neuromyelitis Optica/genetics , Adult , Aquaporin 4/immunology , Female , Humans , Male , Middle Aged , Neuromyelitis Optica/metabolism , Optic Nerve/immunology
12.
J Immunol ; 198(4): 1460-1473, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28087666

ABSTRACT

Myasthenia gravis (MG) is a prototypical B cell-mediated autoimmune disease affecting 20-50 people per 100,000. The majority of patients fall into two clinically distinguishable types based on whether they produce autoantibodies targeting the acetylcholine receptor (AChR-MG) or muscle specific kinase (MuSK-MG). The autoantibodies are pathogenic, but whether their generation is associated with broader defects in the B cell repertoire is unknown. To address this question, we performed deep sequencing of the BCR repertoire of AChR-MG, MuSK-MG, and healthy subjects to generate ∼518,000 unique VH and VL sequences from sorted naive and memory B cell populations. AChR-MG and MuSK-MG subjects displayed distinct gene segment usage biases in both VH and VL sequences within the naive and memory compartments. The memory compartment of AChR-MG was further characterized by reduced positive selection of somatic mutations in the VH CDR and altered VH CDR3 physicochemical properties. The VL repertoire of MuSK-MG was specifically characterized by reduced V-J segment distance in recombined sequences, suggesting diminished VL receptor editing during B cell development. Our results identify large-scale abnormalities in both the naive and memory B cell repertoires. Particular abnormalities were unique to either AChR-MG or MuSK-MG, indicating that the repertoires reflect the distinct properties of the subtypes. These repertoire abnormalities are consistent with previously observed defects in B cell tolerance checkpoints in MG, thereby offering additional insight regarding the impact of tolerance defects on peripheral autoimmune repertoires. These collective findings point toward a deformed B cell repertoire as a fundamental component of MG.


Subject(s)
B-Lymphocytes/immunology , Myasthenia Gravis/immunology , Receptors, Antigen, B-Cell/genetics , Adolescent , Adult , Autoantibodies/immunology , B-Lymphocytes/pathology , B-Lymphocytes/physiology , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Immune Tolerance , Immunologic Memory , Male , Middle Aged , Myasthenia Gravis/physiopathology , Protein Kinases/immunology , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Cholinergic/immunology , Young Adult
13.
Muscle Nerve ; 57(2): 172-184, 2018 02.
Article in English | MEDLINE | ID: mdl-28940642

ABSTRACT

Myasthenia gravis (MG) is an archetypal autoimmune disease. The pathology is characterized by autoantibodies to the acetylcholine receptor (AChR) in most patients or to muscle-specific tyrosine kinase (MuSK) in others and to a growing number of other postsynaptic proteins in smaller subsets. A decrease in the number of functional AChRs or functional interruption of the AChR within the muscle end plate of the neuromuscular junction is caused by pathogenic autoantibodies. Although the molecular immunology underpinning the pathology is well understood, much remains to be learned about the cellular immunology contributing to the production of autoantibodies. This Review documents research concerning the immunopathology of MG, bringing together evidence principally from human studies with an emphasis on the role of adaptive immunity and B cells in particular. Proposed mechanisms for autoimmunity, which take into account that different types of MG may incorporate divergent immunopathology, are offered. Muscle Nerve 57: 172-184, 2018.


Subject(s)
B-Lymphocytes , Myasthenia Gravis/physiopathology , B-Lymphocytes/immunology , Humans , Immunotherapy/adverse effects , Myasthenia Gravis/chemically induced , Myasthenia Gravis/drug therapy , Myasthenia Gravis/immunology , Neoplasms/complications , Neoplasms/therapy , T-Lymphocytes/immunology
14.
J Immunol ; 196(5): 2075-84, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26826242

ABSTRACT

Myasthenia gravis (MG) is a prototypical autoimmune disease that is among the few for which the target Ag and the pathogenic autoantibodies are clearly defined. The pathology of the disease is affected by autoantibodies directed toward the acetylcholine receptor (AChR). Mature, Ag-experienced B cells rely on the action of Th cells to produce these pathogenic Abs. The phenotype of the MG Ag-reactive T cell compartment is not well defined; thus, we sought to determine whether such cells exhibit both a proinflammatory and a pathogenic phenotype. A novel T cell library assay that affords multiparameter interrogation of rare Ag-reactive CD4(+) T cells was applied. Proliferation and cytokine production in response to both AChR and control Ags were measured from 3120 T cell libraries derived from 11 MG patients and paired healthy control subjects. The frequency of CCR6(+) memory T cells from MG patients proliferating in response to AChR-derived peptides was significantly higher than that of healthy control subjects. Production of both IFN-γ and IL-17, in response to AChR, was also restricted to the CCR6(+) memory T cell compartment in the MG cohort, indicating a proinflammatory phenotype. These T cells also included an elevated expression of GM-CSF and absence of IL-10 expression, indicating a proinflammatory and pathogenic phenotype. This component of the autoimmune response in MG is of particular importance when considering the durability of MG treatment strategies that eliminate B cells, because the autoreactive T cells could renew autoimmunity in the reconstituted B cell compartment with ensuing clinical manifestations.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytokines/biosynthesis , Myasthenia Gravis/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Aged, 80 and over , Autoimmunity/immunology , Cell Separation , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Male , Middle Aged , Phenotype , Polymerase Chain Reaction
15.
J Immunol ; 197(9): 3566-3574, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27707999

ABSTRACT

Analyses of somatic hypermutation (SHM) patterns in B cell Ig sequences have important basic science and clinical applications, but they are often confounded by the intrinsic biases of SHM targeting on specific DNA motifs (i.e., hot and cold spots). Modeling these biases has been hindered by the difficulty in identifying mutated Ig sequences in vivo in the absence of selection pressures, which skew the observed mutation patterns. To generate a large number of unselected mutations, we immunized B1-8 H chain transgenic mice with nitrophenyl to stimulate nitrophenyl-specific λ+ germinal center B cells and sequenced the unexpressed κ L chains using next-generation methods. Most of these κ sequences had out-of-frame junctions and were presumably uninfluenced by selection. Despite being nonfunctionally rearranged, they were targeted by SHM and displayed a higher mutation frequency than functional sequences. We used 39,173 mutations to construct a quantitative SHM targeting model. The model showed targeting biases that were consistent with classic hot and cold spots, yet revealed additional highly mutable motifs. We observed comparable targeting for functional and nonfunctional sequences, suggesting similar biological processes operate at both loci. However, we observed species- and chain-specific targeting patterns, demonstrating the need for multiple SHM targeting models. Interestingly, the targeting of C/G bases and the frequency of transition mutations at C/G bases was higher in mice compared with humans, suggesting lower levels of DNA repair activity in mice. Our models of SHM targeting provide insights into the SHM process and support future analyses of mutation patterns.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Models, Genetic , Somatic Hypermutation, Immunoglobulin/genetics , Animals , Cells, Cultured , Clonal Selection, Antigen-Mediated , DNA Repair , Female , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mutation/genetics , Mutation Rate
16.
Proc Natl Acad Sci U S A ; 112(40): 12468-73, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26385967

ABSTRACT

Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.


Subject(s)
Brain/immunology , Lipopolysaccharides/immunology , Microglia/immunology , Positron-Emission Tomography/methods , Acetamides/metabolism , Acetamides/pharmacokinetics , Adult , Biomarkers/metabolism , Brain/metabolism , Carbon Radioisotopes/metabolism , Carbon Radioisotopes/pharmacokinetics , Cytokines/blood , Cytokines/metabolism , Humans , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Lipopolysaccharides/administration & dosage , Male , Microglia/metabolism , Protein Binding , Pyridines/metabolism , Pyridines/pharmacokinetics , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Receptors, GABA/metabolism , Reproducibility of Results , Young Adult
17.
Bioinformatics ; 30(13): 1930-2, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24618469

ABSTRACT

UNLABELLED: Driven by dramatic technological improvements, large-scale characterization of lymphocyte receptor repertoires via high-throughput sequencing is now feasible. Although promising, the high germline and somatic diversity, especially of B-cell immunoglobulin repertoires, presents challenges for analysis requiring the development of specialized computational pipelines. We developed the REpertoire Sequencing TOolkit (pRESTO) for processing reads from high-throughput lymphocyte receptor studies. pRESTO processes raw sequences to produce error-corrected, sorted and annotated sequence sets, along with a wealth of metrics at each step. The toolkit supports multiplexed primer pools, single- or paired-end reads and emerging technologies that use single-molecule identifiers. pRESTO has been tested on data generated from Roche and Illumina platforms. It has a built-in capacity to parallelize the work between available processors and is able to efficiently process millions of sequences generated by typical high-throughput projects. AVAILABILITY AND IMPLEMENTATION: pRESTO is freely available for academic use. The software package and detailed tutorials may be downloaded from http://clip.med.yale.edu/presto.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Lymphocytes/immunology , Receptors, Immunologic/chemistry , Receptors, Immunologic/immunology , Sequence Analysis, DNA , Sequence Analysis, RNA , Software
18.
Eur J Nucl Med Mol Imaging ; 42(7): 1081-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25833352

ABSTRACT

PURPOSE: Activated microglia play a key role in inflammatory demyelinating injury in multiple sclerosis (MS). Microglial activation can be measured in vivo using a positron emission tomography (PET) ligand (11)C-PBR28. We evaluated the test-retest variability (TRV) and lesion detectability of (11)C-PBR28 binding in MS subjects and healthy controls (HCs) with high-resolution PET. METHODS: Four clinically and radiologically stable relapsing-remitting MS subjects (age 41 ± 7 years, two men/two women) and four HCs (age 42 ± 8 years, 2 two men/two women), matched for translocator protein genotype [two high- and two medium-affinity binders according to DNA polymorphism (rs6971) in each group], were studied for TRV. Another MS subject (age 41 years, male) with clinical and radiological activity was studied for lesion detectability. Dynamic data were acquired over 120 min after injection of 634 ± 101 MBq (11)C-PBR28. For the TRV study, subjects were scanned twice, on average 1.4 weeks apart. Volume of distribution (V T) derived from multilinear analysis (MA1) modeling (t* = 30 min, using arterial input data) was the main outcome measure. RESULTS: Mean test V T values (ml cm(-3)) were 3.9 ± 1.4 in the whole brain gray matter (GM), 3.6 ± 1.2 in the whole brain white matter (WM) or normal-appearing white matter (NAWM), and 3.3 ± 0.6 in MS WM lesions; mean retest V T values were 3.7 ± 1.0 in GM, 3.3 ± 0.9 in WM/NAWM, and 3.3 ± 0.7 in MS lesions. Test-retest results showed a mean absolute TRV ranging from 7 to 9 % across GM, WM/NAWM, and MS lesions. High-affinity binders demonstrated 30 % higher V T than medium-affinity binders in GM. Focal (11)C-PBR28 uptake was detected in two enhancing lesions of the active MS patient. CONCLUSION: High-resolution (11)C-PBR28 PET can visualize focal areas where microglial activation is known to be present and has good test-retest reproducibility in the human brain. (11)C-PBR28 PET is likely to be valuable for monitoring both MS disease evolution and response to therapeutic strategies that target microglial activation.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Positron-Emission Tomography , Pyrimidines , Radiopharmaceuticals , White Matter/diagnostic imaging , Adult , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/genetics , Receptors, GABA/genetics , Reproducibility of Results , White Matter/pathology
19.
Muscle Nerve ; 52(4): 527-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25557419

ABSTRACT

INTRODUCTION: Few studies of the demographics, natural history, and clinical management of inclusion body myositis (IBM) have been performed in a large patient population. To more accurately define these characteristics, we developed and distributed a questionnaire to patients with IBM. METHODS: A cross-sectional, self-reporting survey was conducted. RESULTS: The mean age of the 916 participants was 70.4 years, the male-to-female ratio was 2:1, and the majority reported difficulty with ambulation and activities of daily living. The earliest symptoms included impaired use and weakness of arms and legs. The mean time from first symptoms to diagnosis was 4.7 years. Half reported that IBM was their initial diagnosis. A composite functional index negatively associated with age and disease duration, and positively associated with participation in exercise. CONCLUSIONS: These data are valuable for informing patients how IBM manifestations are expected to impair daily living and indicate that self-reporting could be used to establish outcome measures in clinical trials.


Subject(s)
Demography , Myositis, Inclusion Body/diagnosis , Myositis, Inclusion Body/epidemiology , Activities of Daily Living , Adult , Age Distribution , Aged , Aged, 80 and over , Cross-Sectional Studies , Disabled Persons , Female , Humans , Male , Middle Aged , Myositis, Inclusion Body/complications , North America/epidemiology , Self Report
20.
JAMA ; 313(22): 2236-43, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26057284

ABSTRACT

IMPORTANCE: Acute traumatic spinal cord injury results in disability and use of health care resources, yet data on contemporary national trends of traumatic spinal cord injury incidence and etiology are limited. OBJECTIVE: To assess trends in acute traumatic spinal cord injury incidence, etiology, mortality, and associated surgical procedures in the United States from 1993 to 2012. DESIGN, SETTING, AND PARTICIPANTS: Analysis of survey data from the US Nationwide Inpatient Sample databases for 1993-2012, including a total of 63,109 patients with acute traumatic spinal cord injury. MAIN OUTCOMES AND MEASURES: Age- and sex-stratified incidence of acute traumatic spinal cord injury; trends in etiology and in-hospital mortality of acute traumatic spinal cord injury. RESULTS: In 1993, the estimated incidence of acute spinal cord injury was 53 cases (95% CI, 52-54 cases) per 1 million persons based on 2659 actual cases. In 2012, the estimated incidence was 54 cases (95% CI, 53-55 cases) per 1 million population based on 3393 cases (average annual percentage change, 0.2%; 95% CI, -0.5% to 0.9%). Incidence rates among the younger male population declined from 1993 to 2012: for age 16 to 24 years, from 144 cases/million (2405 cases) to 87 cases/million (1770 cases) (average annual percentage change, -2.5%; 95% CI, -3.3% to -1.8%); for age 25 to 44 years, from 96 cases/million (3959 cases) to 71 cases/million persons (2930 cases), (average annual percentage change, -1.2%; 95% CI, -2.1% to -0.3%). A high rate of increase was observed in men aged 65 to 74 years (from 84 cases/million in 1993 [695 cases] to 131 cases/million [1465 cases]; average annual percentage change, 2.7%; 95% CI, 2.0%-3.5%). The percentage of spinal cord injury associated with falls increased significantly from 28% (95% CI, 26%-30%) in 1997-2000 to 66% (95% CI, 64%-68%) in 2010-2012 in those aged 65 years or older (P < .001). Although overall in-hospital mortality increased from 6.6% (95% CI, 6.1%-7.0%) in 1993-1996 to 7.5% (95% CI, 7.0%-8.0%) in 2010-2012 (P < .001), mortality decreased significantly from 24.2% (95% CI, 19.7%-28.7%) in 1993-1996 to 20.1% (95% CI, 17.0%-23.2%) in 2010-2012 (P = .003) among persons aged 85 years or older. CONCLUSIONS AND RELEVANCE: Between 1993 and 2012, the incidence rate of acute traumatic spinal cord injury remained relatively stable but, reflecting an increasing population, the total number of cases increased. The largest increase in incidence was observed in older patients, largely associated with an increase in falls, and in-hospital mortality remained high, especially among elderly persons.


Subject(s)
Spinal Cord Injuries/epidemiology , Accidental Falls/statistics & numerical data , Accidents, Traffic/trends , Adolescent , Adult , Aged , Aged, 80 and over , Female , Hospital Mortality/trends , Humans , Incidence , Male , Middle Aged , Mortality/trends , Spinal Cord Injuries/etiology , Spinal Cord Injuries/mortality , Spinal Cord Injuries/surgery , United States/epidemiology , Wounds, Gunshot/complications , Wounds, Gunshot/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL