Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Publication year range
1.
Angew Chem Int Ed Engl ; 63(4): e202315887, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37988197

ABSTRACT

Hydrazones-consisting of a dynamic imine bond and an acidic NH proton-have recently emerged as versatile photoswitches underpinned by their ability to form thermally bistable isomers, (Z) and (E), respectively. Herein, we introduce two photoresponsive homopolymers containing structurally different hydrazones as main-chain repeating units, synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. Their key difference lies in the hydrazone design, specifically the location of the aliphatic arm connecting the rotor of the hydrazone photoswitch to the aliphatic polymer backbone. Critically, we demonstrate that their main photoresponsive property, i.e., their hydrodynamic volume, changes in opposite directions upon photoisomerization (λ=410 nm) in dilute solution. Further, the polymers-independent of the design of the individual hydrazone monomer-feature a photoswitchable glass transition temperature (Tg ) by close to 10 °C. The herein established design strategy allows to photochemically manipulate macromolecular properties by simple structural changes.

2.
J Neurochem ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38131125

ABSTRACT

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.

3.
Angew Chem Int Ed Engl ; 62(23): e202302995, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36882373

ABSTRACT

We introduce a single-chain nanoparticle (SCNP) system capable of catalyzing the photooxidation of nonpolar alkenes up to three times more efficiently than an equivalent small-molecule photosensitizer at an identical concentration. Specifically, we construct a polymer chain constituted of poly(ethylene glycol) methyl ether methacrylate and glycidyl methacrylate which we compact via multifunctional thiol-epoxide ligation and functionalize with Rose Bengal (RB) in a one pot reaction, affording SCNPs with a hydrophilic shell and hydrophobic photocatalytic regions. Photooxidation of the internal alkene in oleic acid proceeds under green light. RB confined within the SCNP is three times more effective for nonpolar alkenes than free RB in solution, which we hypothesize is due to the spatial proximity of the photosensitizing units to the substrate in the hydrophobic region. Our approach demonstrates that SCNP based catalysts can afford enhanced photocatalysis via confinement effects in a homogeneous reaction environment.

4.
J Biol Chem ; 296: 100282, 2021.
Article in English | MEDLINE | ID: mdl-33450225

ABSTRACT

The role of lipids in modulating membrane protein function is an emerging and rapidly growing area of research. The rational design of lipids that target membrane proteins for the treatment of pathological conditions is a novel extension in this field and provides a step forward in our understanding of membrane transporters. Bioactive lipids show considerable promise as analgesics for the treatment of chronic pain and bind to a high-affinity allosteric-binding site on the human glycine transporter 2 (GlyT2 or SLC6A5). Here, we use a combination of medicinal chemistry, electrophysiology, and computational modeling to develop a rational structure-activity relationship for lipid inhibitors and demonstrate the key role of the lipid tail interactions for GlyT2 inhibition. Specifically, we examine how lipid inhibitor head group stereochemistry, tail length, and double-bond position promote enhanced inhibition. Overall, the l-stereoisomer is generally a better inhibitor than the d-stereoisomer, longer tail length correlates with greater potency, and the position of the double bond influences the activity of the inhibitor. We propose that the binding of the lipid inhibitor deep into the allosteric-binding pocket is critical for inhibition. Furthermore, this provides insight into the mechanism of inhibition of GlyT2 and highlights how lipids can modulate the activity of membrane proteins by binding to cavities between helices. The principles identified in this work have broader implications for the development of a larger class of compounds that could target SLC6 transporters for disease treatment.


Subject(s)
Analgesics/pharmacology , Chronic Pain/drug therapy , Glycine Plasma Membrane Transport Proteins/genetics , Lipids/chemistry , Allosteric Regulation/drug effects , Animals , Binding Sites/drug effects , Biophysical Phenomena , Chronic Pain/genetics , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/chemistry , Humans , Lipids/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Xenopus laevis
5.
Chemistry ; 28(28): e202200389, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35293643

ABSTRACT

We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3 OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.


Subject(s)
Rotaxanes , Anions/chemistry , Chlorides/chemistry , Halogens , Hydrogen Bonding , Models, Molecular , Rotaxanes/chemistry
6.
Org Biomol Chem ; 21(1): 132-139, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453203

ABSTRACT

Aryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient. Proton transport proceeds via self-assembly of the deprotonated aryl-carbamates into membrane permeable dimeric species, formed by intermolecular binding of the carboxylate group to the carbamate moiety. These results highlight the anion transport capacity of the carbamate functional group.


Subject(s)
Fatty Acids , Protons , Fatty Acids/metabolism , Carbamates/pharmacology , Carbamates/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation
7.
Nucleic Acids Res ; 48(10): 5766-5776, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32313953

ABSTRACT

Aberrant KRAS signaling is a driver of many cancers and yet remains an elusive target for drug therapy. The nuclease hypersensitive element of the KRAS promoter has been reported to form secondary DNA structures called G-quadruplexes (G4s) which may play important roles in regulating KRAS expression, and has spurred interest in structural elucidation studies of the KRAS G-quadruplexes. Here, we report the first high-resolution crystal structure (1.6 Å) of a KRAS G-quadruplex as a 5'-head-to-head dimer with extensive poly-A π-stacking interactions observed across the dimer. Molecular dynamics simulations confirmed that the poly-A π-stacking interactions are also maintained in the G4 monomers. Docking and molecular dynamics simulations with two G4 ligands that display high stabilization of the KRAS G4 indicated the poly-A loop was a binding site for these ligands in addition to the 5'-G-tetrad. Given sequence and structural variability in the loop regions provide the opportunity for small-molecule targeting of specific G4s, we envisage this high-resolution crystal structure for the KRAS G-quadruplex will aid in the rational design of ligands to selectively target KRAS.


Subject(s)
G-Quadruplexes , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras)/genetics , Crystallography, X-Ray , DNA/chemistry , Dimerization , Ligands , Molecular Dynamics Simulation , Mutation , Poly A/chemistry , Water/chemistry
8.
J Chem Phys ; 154(9): 095101, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33685172

ABSTRACT

A coarse-grain model of the epithelial plasma membrane was developed from high-resolution lipidomic data and simulated using the MARTINI force field to characterize its biophysical properties. Plasmalogen lipids, Forssman glycosphingolipids, and hydroxylated Forssman glycosphingolipids and sphingomyelin were systematically added to determine their structural effects. Plasmalogen lipids have a minimal effect on the overall biophysical properties of the epithelial plasma membrane. In line with the hypothesized role of Forssman lipids in the epithelial apical membrane, the introduction of Forssman lipids initiates the formation of glycosphingolipid-rich nanoscale lipid domains, which also include phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL). This decreases the lateral diffusion in the extracellular leaflet, as well as the area per lipid of domain forming lipids, most notably PE. Finally, hydroxylation of the Forssman glycosphingolipids and sphingomyelin further modulates the lateral organization of the membrane. Through comparison to the previously studied average and neuronal plasma membranes, the impact of membrane lipid composition on membrane properties was characterized. Overall, this study furthers our understanding of the biophysical properties of complex membranes and the impact of lipid diversity in modulating membrane properties.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/cytology , Plasmalogens/metabolism , Sphingolipids/metabolism , Diffusion , Hydroxylation
9.
Biochemistry ; 59(33): 3010-3018, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32786397

ABSTRACT

Cell membranes contain incredible diversity in the chemical structures of their individual lipid species and the ratios in which these lipids are combined to make membranes. Nevertheless, our current understanding of how each of these components affects the properties of the cell membrane remains elusive, in part due to the difficulties in studying the dynamics of membranes at high spatiotemporal resolution. In this work, we use coarse-grained molecular dynamics simulations to investigate how individual lipid species contribute to the biophysical properties of the neuronal plasma membrane. We progress through eight membranes of increasing chemical complexity, ranging from a simple POPC/CHOL membrane to a previously published neuronal plasma membrane [Ingólfsson, H. I., et al. (2017) Biophys. J. 113 (10), 2271-2280] containing 49 distinct lipid species. Our results show how subtle chemical changes can affect the properties of the membrane and highlight the lipid species that give the neuronal plasma membrane its unique biophysical properties. This work has potential far-reaching implications for furthering our understanding of cell membranes.


Subject(s)
Cell Membrane/chemistry , Membrane Fluidity/physiology , Membrane Lipids/chemistry , Neurons/ultrastructure , Animals , Biophysical Phenomena , Cell Membrane/physiology , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Membrane Lipids/physiology , Models, Molecular , Molecular Dynamics Simulation , Neurons/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Sphingolipids/chemistry , Sphingolipids/metabolism , Sphingomyelins/chemistry , Sphingomyelins/metabolism
10.
J Struct Biol ; 211(1): 107513, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32339763

ABSTRACT

The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/ultrastructure , Cell Membrane/ultrastructure , Membrane Lipids/chemistry , Protein Conformation , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Binding Sites/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Electron Spin Resonance Spectroscopy , Humans , Hydrolysis , Membrane Lipids/genetics , Mice , Molecular Dynamics Simulation , Nucleotides/chemistry , Nucleotides/genetics
11.
Proc Natl Acad Sci U S A ; 114(9): 2218-2223, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193899

ABSTRACT

Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.


Subject(s)
Bacterial Proteins/chemistry , Ethanolaminephosphotransferase/chemistry , Lipid A/chemistry , Neisseria meningitidis/chemistry , Periplasm/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanolaminephosphotransferase/genetics , Ethanolaminephosphotransferase/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Lipid A/metabolism , Molecular Dynamics Simulation , Neisseria meningitidis/enzymology , Periplasm/enzymology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
12.
J Chem Inf Model ; 59(5): 2287-2298, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30540465

ABSTRACT

The human multidrug transporter P-glycoprotein (P-gp) transports over 200 chemically diverse substrates, influencing their bioavailability and tissue distribution. Pharmacological studies have identified both competitive and noncompetitive P-gp substrates, but neither the precise location of the substrate binding sites, nor the basis of competitive and noncompetitive interactions has been fully characterized. Here, potential of mean force (PMF) calculations are used to identify the transport-competent minimum free energy binding locations of five compounds, Hoechst 33342, Rhodamine 123, paclitaxel, tariquidar, and verapamil to P-gp. Unrestrained molecular dynamics simulations were also performed to confirm the substrates were stable in the energy wells determined using the PMF calculations. All compounds had energy minima within the P-gp transmembrane (TM) pore. For Hoechst 33342 and Rhodamine 123, a second minimum outside the TM pore was also identified. Based on this and previous studies of nicardipine and morphine [ Subramanian et al. J. Chem. Inf. Model. 2015 , 55 , 1202 ], a general scheme that accounts for the observed noncompetitive and competitive substrate interactions with P-gp is proposed.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , Models, Molecular , Pharmaceutical Preparations/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Binding Sites , Protein Conformation
13.
Eur Biophys J ; 47(1): 59-67, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28620741

ABSTRACT

E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.


Subject(s)
Cadherins/chemistry , Protein Multimerization , Molecular Dynamics Simulation , Protein Stability , Protein Structure, Quaternary , Solutions
14.
Biochim Biophys Acta ; 1858(4): 776-82, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26724201

ABSTRACT

The apparent activity of the multidrug transporter P-glycoprotein (P-gp) is enhanced by the presence of cholesterol. Whether this is due to the direct effect of cholesterol on the activity of P-gp, its effect on the local concentration of substrate in the membrane, or its effect on the rate of entry of the drug into the cell, is unknown. In this study, molecular dynamics simulation techniques coupled with potential of mean force calculations have been used to investigate the role of cholesterol in the movement of four P-gp substrates across a POPC bilayer in the presence or absence of 10% cholesterol. The simulations suggest that the presence of cholesterol lowers the free energy associated with entering the middle of the bilayer in a substrate-specific manner. These findings suggest that P-gp substrates may preferentially accumulate in cholesterol-rich regions of the membrane, which may explain its enhanced transport activity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Membrane/chemistry , Cholesterol/metabolism , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Cell Membrane/metabolism , Cholesterol/chemistry , Cholesterol/pharmacology , Humans , Molecular Dynamics Simulation , Substrate Specificity
15.
Biochemistry ; 55(49): 6908-6918, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27951661

ABSTRACT

A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F420H-), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.


Subject(s)
Oxidoreductases/metabolism , Catalysis , Hydrophobic and Hydrophilic Interactions
16.
J Biol Chem ; 290(40): 24308-25, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26240152

ABSTRACT

Many solute carrier 6 (SLC6) family transporters require ancillary subunits to modify their expression and activity. The main apical membrane neutral amino acid transporters in mouse intestine and kidney, B(0)AT1 and B(0)AT3, require the ancillary protein collectrin or ACE2 for plasma membrane expression. Expression and activity of SLC6 neurotransmitter transporters are modulated by interaction with syntaxin 1A. Utilizing monocarboxylate-B(0)AT1/3 fusion constructs, we discovered that collectrin is also necessary for B(0)AT1 and B(0)AT3 catalytic function. Syntaxin 1A and syntaxin 3 inhibit the membrane expression of B(0)AT1 by competing with collectrin for access. A mutagenesis screening approach identified residues on trans-membrane domains 1α, 5, and 7 on one face of B(0)AT3 as a key region involved in interaction with collectrin. Mutant analysis established residues that were involved in collectrin-dependent functions as follows: plasma membrane expression of B(0)AT3, catalytic activation, or both. These results identify a potential binding site for collectrin and other SLC6 ancillary proteins.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Animals , Binding Sites , Biotinylation , CHO Cells , Catalysis , Cricetinae , Cricetulus , Drosophila melanogaster , Humans , Membrane Glycoproteins/metabolism , Mice , Mutagenesis , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Qa-SNARE Proteins/metabolism , RNA Interference , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Syntaxin 1/metabolism , Xenopus laevis
17.
Nat Chem Biol ; 10(1): 35-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24212134

ABSTRACT

The relative stability of divalent first-row transition metal ion complexes, as defined by the Irving-Williams series, poses a fundamental chemical challenge for selectivity in bacterial metal ion acquisition. Here we show that although the substrate-binding protein of Streptococcus pneumoniae, PsaA, is finely attuned to bind its physiological substrate manganese, it can also bind a broad range of other divalent transition metal cations. By combining high-resolution structural data, metal-binding assays and mutational analyses, we show that the inability of open-state PsaA to satisfy the preferred coordination chemistry of manganese enables the protein to undergo the conformational changes required for cargo release to the Psa permease. This is specific for manganese ions, whereas zinc ions remain bound to PsaA. Collectively, these findings suggest a new ligand binding and release mechanism for PsaA and related substrate-binding proteins that facilitate specificity for divalent cations during competition from zinc ions, which are more abundant in biological systems.


Subject(s)
Membrane Transport Proteins/metabolism , Metals/metabolism , Binding Sites , Cations , Membrane Transport Proteins/chemistry , Models, Molecular , Streptococcus pneumoniae/metabolism
18.
Mol Microbiol ; 91(4): 834-51, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24428621

ABSTRACT

Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S. pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S. pneumoniae occurs via the ATP-binding cassette transporter AdcCB, and, unusually, two zinc-binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc-specific substrate-binding protein (SBP). By contrast with other zinc-binding SBPs, AdcA has two zinc-binding domains: a canonical amino-terminal cluster A-I zinc-binding domain and a carboxy-terminal zinc-binding domain, which has homology to the zinc-chaperone ZinT from Gram-negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc-binding SBPs of S. pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Homeostasis , Streptococcus pneumoniae/metabolism , Zinc/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Streptococcus pneumoniae/genetics
19.
J Chem Inf Model ; 55(6): 1202-17, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-25938863

ABSTRACT

The multidrug transporter P-glycoprotein (P-gp) is central to the development of multidrug resistance in cancer. While residues essential for transport and binding have been identified, the location, composition, and specificity of potential drug binding sites are uncertain. Here molecular dynamics simulations are used to calculate the free energy profile for the binding of morphine and nicardipine to P-gp. We show that morphine and nicardipine primarily interact with key residues implicated in binding and transport from mutational studies, binding at different but overlapping sites within the transmembrane pore. Their permeation pathways were distinct but involved overlapping sets of residues. The results indicate that the binding location and permeation pathways of morphine and nicardipine are not well separated and cannot be considered as unique. This has important implications for our understanding of substrate uptake and transport by P-gp. Our results are independent of the choice of starting structure and consistent with a range of experimental studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , Computational Biology/methods , Morphine/metabolism , Nicardipine/metabolism , Binding Sites , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary
20.
Trends Biochem Sci ; 34(10): 520-31, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19748784

ABSTRACT

ATP-binding cassette (ABC) transporters form one of the largest and most ancient of protein families. ABC transporters couple hydrolysis of ATP to vectorial translocation of diverse substrates across cellular membranes. Many human ABC transporters are medically important in causing, for example, multidrug resistance to cytotoxic drugs. Seven complete prokaryotic structures and one eukaryotic structure have been solved for transporters from 2002 to date, and a wealth of research is being conducted on and around these structures to resolve the mechanistic conundrum of how these transporters couple ATP hydrolysis in cytosolic domains to substrate translocation through the transmembrane pore. Many questions remained unanswered about this mechanism, despite a plethora of data and a number of interesting and controversial models.


Subject(s)
ATP-Binding Cassette Transporters , Protein Conformation , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Biological Transport/physiology , Crystallography, X-Ray , Evolution, Molecular , Humans , Maltose/metabolism , Metals/chemistry , Metals/metabolism , Methionine/metabolism , Models, Molecular , Molybdenum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL