Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893269

ABSTRACT

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Subject(s)
COVID-19 , Humans , Animals , Mice , RNA, Small Interfering/genetics , COVID-19/therapy , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oligonucleotides , Lung
2.
Pediatr Res ; 95(3): 852-856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37758864

ABSTRACT

BACKGROUND: Newborns are at high risk of sepsis. At present there is no definitive "rule in" blood test for sepsis at the point of clinical concern. A positive blood culture remains the gold standard test for neonatal sepsis, however laboratory markers that correlate prospectively with culture positive sepsis could aid clinicians in making decisions regarding administration of empiric antibiotic therapies. METHODS: This multi-site, prospective observational study will take place in two neonatal intensive care units (National Maternity Hospital and Rotunda Hospital, Dublin). Neonates born at less than 34 weeks will be enroled and informed consent obtained prior to late onset sepsis work up. If at any point subsequently during their neonatal intensive care stay they develop signs and symptoms of possible sepsis requiring blood culture, an additional sodium citrate sample will be obtained. Infants will be categorised into three groups as follows: (i) culture positive sepsis, (ii) culture negative sepsis where an infant receives 5 days of antibiotics (iii) non sepsis. Our primary outcome is to establish if differential platelet/endothelial activation can prospectively identify neonatal culture positive late onset sepsis. TRIAL REGISTRATION NUMBER: NCT05530330 IMPACT: Preterm infants are a high risk group for the development of sepsis which is a major cause of mortality in this population. Platelets have been associated with host response to invasive bacterial infections both in animal models and translational work. A positive blood culture is the gold standard test for neonatal sepsis but can be unreliable due to limited blood sampling in the very low birth weight population. This study hopes to establish if platelet/endothelial associated plasma proteins can prospectively identify late onset neonatal sepsis.


Subject(s)
Bacterial Infections , Neonatal Sepsis , Sepsis , Female , Humans , Infant , Infant, Newborn , Pregnancy , Anti-Bacterial Agents/therapeutic use , Infant, Premature , Intensive Care Units, Neonatal , Neonatal Sepsis/diagnosis , Observational Studies as Topic , Platelet Activation , Sepsis/epidemiology , Prospective Studies , Multicenter Studies as Topic
3.
Mol Ther ; 31(6): 1661-1674, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37177784

ABSTRACT

Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.


Subject(s)
Huntington Disease , MutS Homolog 3 Protein , Trinucleotide Repeat Expansion , Animals , Mice , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Neostriatum/metabolism , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Trinucleotide Repeat Expansion/genetics , MutS Homolog 3 Protein/genetics
4.
Pediatr Res ; 94(6): 1973-1977, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37443343

ABSTRACT

BACKGROUND: Studies have demonstrated increased morbidity and mortality with platelet transfusions in the neonatal period. Platelets are as important for host immunity and inflammation as for hemostasis. Increased inflammation may explain the dose-associated increase in mortality, bleeding, and lung disease. OBJECTIVE: This study aims to assess if there are any changes in inflammatory cytokines post-platelet transfusion in babies in NICU. METHODS: This prospective observational study recruited babies due to receive a non-emergency platelet transfusion. Dried whole blood samples were collected prior to and 2 h post-transfusion. Samples were processed using multiplex immunoassay to enable analysis of tiny blood volumes. Statistical analysis was performed using R. RESULTS: Seventeen babies underwent 26 platelet transfusions across two centers. Median birthweight was 1545 g (535-3960 g) and median birth gestation was 31 weeks and 1 day (23 + 1 to 40 + 5). Median pre-transfusion platelet count was 19.5 × 109/l. There was a significant increase in levels of CXCL5 (p < 0.001), CD40 (p = 0.001), and TGF-ß (p = 0.001) in neonatal blood samples post-platelet transfusion in the study group. CONCLUSION: The increase in the cytokines CXCL5, CD40 and TGF-ß after platelet transfusion in babies in NICU could potentiate existing inflammation, NEC, lung, or white matter injury. This could potentially explain long-term harm from platelet transfusion in babies. IMPACT: There is a change in levels of immunomodulatory proteins CXCL5, CD40, and TGF-ß after platelet transfusion in babies in NICU. Murine neonatal models have demonstrated an increase in cytokine levels after platelet transfusions. This is the first time that this has been demonstrated in human neonates. The increase in proinflammatory cytokines could potentially explain the long-term harm from platelet transfusion in babies, as they could potentiate existing inflammation, NEC, lung injury, or white matter injury.


Subject(s)
Blood Platelets , Platelet Transfusion , Infant, Newborn , Humans , Animals , Mice , Platelet Transfusion/adverse effects , Cytokines , Inflammation , Transforming Growth Factor beta
5.
Malar J ; 22(1): 26, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36698147

ABSTRACT

BACKGROUND: Although most of Panamá is free from malaria, localized foci of transmission persist, including in the Guna Yala region. Government-led entomological surveillance using an Entomological Surveillance Planning Tool (ESPT) sought to answer programmatically relevant questions on local entomological drivers of transmission and gaps in protection to guide local vector control decision-making. METHODS: The ESPT was used to design a sampling plan to answer priority programmatic questions about the appropriateness of Long Lasting Insecticidal Nets (LLINs) and spaces and times where humans remain exposed to Anopheles bites (gaps in protection) in the communities of Permé and Puerto Obaldía, Guna Yala. Adult Anopheles were sampled at three time points via human landing catches (HLCs) during the rainy and dry seasons (2018/2019). Human behaviour observations (HBOs) were conducted alongside HLCs to examine intervention use, indoor versus outdoor activity, and sleeping patterns. HLC and HBO data were integrated to evaluate HBO-adjusted human biting rate (HBR). RESULTS: A total of 7,431 adult Anopheles were collected across both sites. Of the 450 specimens molecularly confirmed to species-level, 75.5% (n = 340) were confirmed as Anopheles Nyssorhynchus albimanus, followed by Anopheles (Ny.) aquasalis. Anopheles host seeking activity was demonstrated to be primarily exophagic throughout all sampling periods and in both communities. When adjusted with HBOs, exposure to mosquito bites was predominantly indoors and overnight in Permé (Nov, Mar), compared to predominantly outdoors in Puerto Obaldía (Nov, Mar, Jul). Differences in site-specific human-vector exposure profiles were due to contrasting cultural and lifestyle practices between Permé and Puerto Obaldía (possibly partly influenced by the absence of electricity in Permé), and lower LLIN use in Permé. This evidence supported a previously planned LLIN campaign alongside a social behaviour change communication (SBCC) strategy in the Guna Yala Comarca (Jul 2019), which increased LLIN use. In turn, this led to a reduction of indoor exposure to mosquito bites, and a shift to predominant outdoor exposure to mosquito bites. CONCLUSION: ESPT-based question-driven planning and the integration of HBOs, intervention, and HLC data generated evidence towards answering the programmatic questions. This evidence enabled the characterization of site-specific human-vector exposure profiles, and the quantification of remaining gaps in protection. These data also provide important insights into remaining gaps in protection that must be addressed to further reduce human exposure to mosquito bites at these sites.


Subject(s)
Anopheles , Insect Bites and Stings , Malaria , Adult , Animals , Humans , Mosquito Vectors , Insect Bites and Stings/prevention & control , Malaria/epidemiology , Panama , Mosquito Control
6.
Pediatr Res ; 91(2): 359-367, 2022 01.
Article in English | MEDLINE | ID: mdl-34711945

ABSTRACT

Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection. IMPACT: Platelets are increasingly being recognised as important "first responders" to immune threats. Differences in adult and paediatric platelets may contribute to differing immune response to infections. Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.


Subject(s)
Blood Platelets/metabolism , Inflammation Mediators/metabolism , Sepsis/blood , Blood Platelets/immunology , Blood Proteins/metabolism , Child , Humans , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Infant, Newborn , Proteome , Sepsis/immunology , Signal Transduction
7.
Eur J Pediatr ; 181(1): 23-33, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34283272

ABSTRACT

Premature infants are at high risk of haemorrhage and thrombosis. Our understanding of the differences between the neonatal and adult haemostatic system is evolving. There are several limitations to the standard coagulation tests used in clinical practice, and there is currently a lack of evidence to support many of the transfusion practices in neonatal medicine. The evaluation of haemostasis is particularly challenging in neonates due to their limited blood volume. The calibrated automated thrombogram (CAT) is a global coagulation assay, first described in 2002, which evaluates both pro- and anti-coagulant pathways in platelet-rich or platelet-poor plasma. In this review, the current applications and limitations of CAT in the neonatal population are discussed.Conclusion: CAT has successfully elucidated several differences between haemostatic mechanisms in premature and term neonates compared with adults. Moreover, it has been used to evaluate the effect of a number of haemostatic drugs in a pre-clinical model. However, the lack of evidence of CAT as an accurate predictor of neonatal bleeding, blood volume required and the absence of an evidence-based treatment algorithm for abnormal CAT results limit its current application as a bedside clinical tool for the evaluation of sick neonates. What is Known: • The Calibrated automated thrombogram (CAT) is a global coagulation assay which evaluates pro- and anti-coagulant pathways. • CAT provides greater information than standard clotting tests and has been used in adults to evaluate bleeding risk. What is New: • This review summarises the physiological differences in haemostasis between neonates and adults described using CAT. • The haemostatic effect of several drugs has been evaluated in neonatal plasma using CAT.


Subject(s)
Hemostatics , Pharmaceutical Preparations , Blood Coagulation Tests , Hemorrhage , Hemostasis , Humans , Infant, Newborn
8.
Eur J Pediatr ; 181(10): 3725-3732, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35945291

ABSTRACT

Inborn errors of metabolism are an individually rare but collectively significant cause of mortality and morbidity in the neonatal period. They are identified by either newborn screening programmes or clinician-initiated targeted biochemical screening. This study examines the relative contribution of these two methods to the identification of inborn errors of metabolism and describes the incidence of these conditions in a large, tertiary, neonatal unit. We also examined which factors could impact the reliability of metabolic testing in this cohort. This is a retrospective, single-site study examining infants in whom a targeted metabolic investigation was performed from January 2018 to December 2020 inclusive. Data was also provided by the national newborn screening laboratory regarding newborn screening diagnoses. Two hundred and four newborns received a clinician-initiated metabolic screen during the time period examined with 5 newborns being diagnosed with an inborn error of metabolism (IEM) (2.4%). Of the 25,240 infants born in the hospital during the period examined, a further 11 newborns had an inborn error of metabolism diagnosed on newborn screening. This produced an incidence in our unit over the time described of 6.34 per 10,000 births. This number reflects a minimum estimate, given that the conditions diagnosed refer to early-onset disorders and distinctive categories of IEM only. Efficiency of the clinician-initiated metabolic screening process was also examined. The only statistically significant variable in requiring repeat metabolic screening was early day of life (z-score = - 2.58, p = 0.0098). A total of 28.4% was missing one of three key metabolic investigation parameters of blood glucose, ammonia or lactate concentration with ammonia the most common investigation missing. While hypoglycemia was the most common clinical rationale for a clinician-initiated metabolic test, it was a poor predictor of inborn error of metabolism with no newborns of 25 screened were diagnosed with a metabolic disorder. CONCLUSION: Clinician-targeted metabolic screening had a high diagnostic yield given the relatively low prevalence of inborn errors of metabolism in the general population. Thoughts should be given to the rationale behind each targeted metabolic test and what specific metabolic disease or category of inborn error of metabolism they are concerned along with commencing targeted testing. WHAT IS KNOWN: • Inborn errors of metabolism are a rare but potentially treatable cause of newborn mortality and morbidity. • A previous study conducted in a tertiary unit in an area with limited newborn screening demonstrated a diagnostic yield of 5.4%. WHAT IS NEW: • Clinician-initiated targeted metabolic screening has a good diagnostic performance even with a more expanded newborn screening programme. • Further optimisation could be achieved by examining the best timing and also the rationale of metabolic testing in the newborn period.


Subject(s)
Metabolic Diseases , Metabolism, Inborn Errors , Ammonia , Blood Glucose , Humans , Infant , Infant, Newborn , Lactates , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Neonatal Screening/methods , Reproducibility of Results , Retrospective Studies
9.
Pediatr Res ; 90(2): 289-299, 2021 08.
Article in English | MEDLINE | ID: mdl-33184501

ABSTRACT

Extracellular vesicles (EVs) are cell-derived membrane-bound particles, extensively investigated across many fields to improve the understanding of pathophysiological processes, as biomarkers of disease and as therapeutic targets for pharmacological intervention. We aim to describe the current knowledge of EVs detected in the body fluids of human neonates, both term and preterm, from birth to 4 weeks of age. To date, EVs have been described in several neonatal body fluids, including cerebrospinal fluid, umbilical cord blood, neonatal blood, tracheal aspirates and urine. These studies demonstrate some important roles of EVs in the neonatal population, particularly in haemostasis. Moreover, some studies have demonstrated the pathophysiological mechanisms and the identification of potential biomarkers of neonatal disease. We must continue to build on this knowledge, evaluating the role of EVs in neonatal pathology, particularly in prematurity and during the perinatal adaption period. Future studies should use larger numbers, robust EV characterisation techniques and always correlate the findings to clinical outcomes. IMPACT: This article summarises the current knowledge of the effect of EVs in neonates. It describes the potential compensatory role of EVs in neonatal haemostasis. It also describes the role of EVs as mediators of pathology and as potential biomarkers of perinatal and neonatal disease.


Subject(s)
Extracellular Vesicles/pathology , Infant, Newborn, Diseases/pathology , Biomarkers/metabolism , Child Development , Extracellular Vesicles/metabolism , Hemostasis , Humans , Infant, Newborn , Infant, Newborn, Diseases/blood , Infant, Newborn, Diseases/physiopathology
10.
Malar J ; 20(1): 443, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34819092

ABSTRACT

BACKGROUND: Though most of Panamá is free from malaria, localized foci of transmission persist, including in the Guna Yala region. Government-led entomological surveillance using an entomological surveillance planning tool (ESPT) sought to answer programmatically-relevant questions that would enhance the understanding of both local entomological drivers of transmission and gaps in protection that result in persisting malaria transmission to guide local vector control decision-making. METHODS: The ESPT was used to design a sampling plan centered around the collection of minimum essential indicators to investigate the relevance of LLINs and IRS in the communities of Permé and Puerto Obaldía, Guna Yala, as well as to pinpoint any remaining spaces and times where humans are exposed to Anopheles bites (gaps in protection). Adult Anopheles were collected at three time points via human landing catches (HLCs), CDC Light Traps (LT), and pyrethrum spray catches (PSCs) during the rainy and dry seasons. Mosquitoes were identified to species via molecular methods. Insecticide susceptibility testing of the main vector species to fenitrothion was conducted. RESULTS: In total, 7537 adult Anopheles were collected from both sites. Of the 493 specimens molecularly confirmed to species, two thirds (n = 340) were identified as Nyssorhynchus albimanus, followed by Anopheles aquasalis. Overall Anopheles human biting rates (HBRs) were higher outdoors than indoors, and were higher in Permé than in Puerto Obaldía: nightly outdoor HBR ranged from 2.71 bites per person per night (bpn) (Puerto Obaldía), to 221.00 bpn (Permé), whereas indoor nightly HBR ranged from 0.70 bpn (Puerto Obaldía) to 81.90 bpn (Permé). Generally, peak biting occurred during the early evening. The CDC LT trap yields were significantly lower than that of HLCs and this collection method was dropped after the first collection. Pyrethrum spray catches resulted in only three indoor resting Anopheles collected. Insecticide resistance (IR) of Ny. albimanus to fenitrothion was confirmed, with only 65.5% mortality at the diagnostic time. CONCLUSION: The early evening exophagic behaviour of Anopheles vectors, the absence of indoor resting behaviours, and the presence of resistance to the primary intervention insecticide demonstrate limitations of the current malaria strategy, including indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), and point to both gaps in protection and to the drivers of persisting malaria transmission in Guna Yala. These findings highlight the need for continued and directed entomological surveillance, based on programmatic questions, that generates entomological evidence to inform an adaptive malaria elimination strategy.


Subject(s)
Anopheles/physiology , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/administration & dosage , Malaria/transmission , Mosquito Vectors/physiology , Animals , Female , Humans , Male , Mosquito Control , Panama
11.
J Inherit Metab Dis ; 44(3): 639-655, 2021 05.
Article in English | MEDLINE | ID: mdl-33300147

ABSTRACT

Since 1972, 18 patients (10 females/8 males) have been detected by newborn bloodspot screening (NBS) with neonatal-onset maple syrup urine disease (MSUD) in Ireland. Patients were stratified into three clusters according to clinical outcome at the time of data collection, including developmental, clinical, and IQ data. A fourth cluster comprised of two early childhood deaths; a third patient died as an adult. We present neuroimaging and electroencephalography together with clinical and biochemical data. Incidence of MSUD (1972-2018) was 1 in 147 975. Overall good clinical outcomes were achieved with 15/18 patients alive and with essentially normal functioning (with only the lowest performing cluster lying beyond a single SD on their full scale intelligence quotient). Molecular genetic analysis revealed genotypes hitherto not reported, including a possible digenic inheritance state for the BCKDHA and DBT genes in one family. Treatment has been based on early implementation of emergency treatment, diet, close monitoring, and even dialysis in the setting of acute metabolic decompensation. A plasma leucine ≥400 µmol/L (outside therapeutic range) was more frequently observed in infancy or during adolescence, possibly due to infections, hormonal changes, or noncompliance. Children require careful management during metabolic decompensations in early childhood, and this represented a key risk period in our cohort. A high level of metabolic control can be achieved through diet with early implementation of a "sick day" regime and, in some cases, dialysis as a rescue therapy. The Irish cohort, despite largely classical phenotypes, achieved good outcomes in the NBS era, underlining the importance of early diagnosis and skilled multidisciplinary team management.


Subject(s)
Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Adolescent , Child , Child, Preschool , Diet, Protein-Restricted , Dried Blood Spot Testing , Early Diagnosis , Female , Genotype , Humans , Infant , Infant, Newborn , Ireland , Leucine/blood , Male , Neonatal Screening/methods , Phenotype , Retrospective Studies
12.
Nucleic Acids Res ; 47(2): 546-558, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30517736

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeat) endonucleases are at the forefront of biotechnology, synthetic biology and gene editing. Methods for controlling enzyme properties promise to improve existing applications and enable new technologies. CRISPR enzymes rely on RNA cofactors to guide catalysis. Therefore, chemical modification of the guide RNA can be used to characterize structure-activity relationships within CRISPR ribonucleoprotein (RNP) enzymes and identify compatible chemistries for controlling activity. Here, we introduce chemical modifications to the sugar-phosphate backbone of Streptococcus pyogenes Cas9 CRISPR RNA (crRNA) to probe chemical and structural requirements. Ribose sugars that promoted or accommodated A-form helical architecture in and around the crRNA 'seed' region were tolerated best. A wider range of modifications were acceptable outside of the seed, especially D-2'-deoxyribose, and we exploited this property to facilitate exploration of greater chemical diversity within the seed. 2'-fluoro was the most compatible modification whereas bulkier O-methyl sugar modifications were less tolerated. Activity trends could be rationalized for selected crRNAs using RNP stability and DNA target binding experiments. Cas9 activity in vitro tolerated most chemical modifications at predicted 2'-hydroxyl contact positions, whereas editing activity in cells was much less tolerant. The biochemical principles of chemical modification identified here will guide CRISPR-Cas9 engineering and enable new or improved applications.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , RNA, Bacterial/chemistry , DNA Cleavage , DNA, A-Form/chemistry , RNA, Bacterial/metabolism , Ribonucleoproteins/metabolism , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics , Structure-Activity Relationship
13.
Chemistry ; 26(41): 8857-8861, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32166818

ABSTRACT

We demonstrate the first mechanochemical synthesis of DNA fragments by ball milling, enabling the synthesis of oligomers of controllable sequence and length using multi-step, one-pot reactions, without bulk solvent or the need to isolate intermediates. Mechanochemistry allowed for coupling of phosphoramidite monomers to the 5'-hydroxyl group of nucleosides, iodine/water oxidation of the resulting phosphite triester linkage, and removal of the 5'-dimethoxytrityl (DMTr) protecting group in situ in good yields (up to 60 % over three steps) to produce DNA dimers in a one-pot manner. H-Phosphonate chemistry under milling conditions enabled coupling and protection of the H-phosphonate linkage, as well as removal of the 5'-DMTr protecting group in situ, enabling a one-pot process with good yields (up to 65 % over three steps, or ca. 87 % per step). Sulfurization of the internucleotide linkage was possible using elemental sulfur (S8) or sulfur transfer reagents, yielding the target DNA phosphorothioate dimers in good yield (up to 80 % over two steps). This work opens the door to creation of solvent-free synthesis methodologies for DNA and RNA therapeutics.


Subject(s)
DNA/chemical synthesis , Organophosphonates/chemical synthesis , Organophosphorus Compounds/chemistry , Phosphates/chemistry , Phosphites/chemistry , Indicators and Reagents , Nucleosides , Phosphates/chemical synthesis , RNA
14.
Eur J Pediatr ; 179(12): 1963-1967, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33051717

ABSTRACT

Non-specific symptoms such as irritability, vomiting, and back arching during the infant period are often attributed to gastroesophageal reflux. While numerous studies have shown no significant benefit to the use of acid suppressant medications in this population, these medications are frequently prescribed in response to these symptoms. Our goals were to understand how often children were being prescribed this medication. To do this, data was extracted from a national database for reimbursement of prescribed medications through the General Medical Services scheme (GMS). Infants aged less than 1 year and eligible for reimbursement under GMS were included for analysis. A total of 450 infants per 10,000 eligible population received an anti-reflux preparation from the following drug classes (H2 antagonists, proton pump inhibitors, or alginate preparations) in 2018. This is compared with that in 2009 where only 137 per 10,000 eligible infants received these medications. This increase was predominantly attributable to an increase in ranitidine prescriptions.Conclusion: Despite a change in clinical guidelines, anti-reflux preparations are increasingly being prescribed to infants aged less than 1 year. The reasons behind the increase in prescriptions containing these medications cannot be ascertained from this data. This may suggest a proportion of these prescriptions may be unwarranted in this population. What is Known: • The prescription of PPIs in infants has increased in a number of countries. • Use of anti-reflux medications has a very poor evidence base in infancy. What is New: • This data focuses only on an infant age group in a "well" cohort. • Ranitidine may contribute to increased acid-suppressant use in infancy.


Subject(s)
Drug Utilization , Gastroesophageal Reflux , Child , Gastroesophageal Reflux/drug therapy , Histamine H2 Antagonists/therapeutic use , Humans , Infant , Prescriptions , Proton Pump Inhibitors/therapeutic use , Retrospective Studies
15.
Biochemistry ; 58(6): 582-589, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30520300

ABSTRACT

We present a new design of mixed-backbone antisense oligonucleotides (ASOs) containing both DNA and peptide nucleic acid (PNA). Previous generations of PNA-DNA chimeras showed low binding affinity, reducing their potential as therapeutics. The addition of a 5'-wing of locked nucleic acid as well as the combination of a modified nucleotide and a PNA monomer at the junction between PNA and DNA yielded high-affinity chimeras. The resulting ASOs demonstrated high serum stability and elicited robust RNase H-mediated cleavage of complementary RNA. These properties allowed the chimeric ASOs to demonstrate high gene silencing efficacy and potency in cells, comparable with those of LNA gapmer ASOs, via both lipid transfection and gymnosis.


Subject(s)
Gene Silencing , Oligonucleotides, Antisense/pharmacology , Peptide Nucleic Acids/pharmacology , RNA, Long Noncoding/antagonists & inhibitors , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Oligonucleotides, Antisense/chemistry , Peptide Nucleic Acids/chemistry , RNA, Long Noncoding/genetics , Ribonuclease H/metabolism
16.
Pediatr Res ; 95(3): 600, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993642
19.
Chemistry ; 24(61): 16432-16439, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30125398

ABSTRACT

The ability of fluorine to serve as a hydrogen-bond acceptor has been debated for many years. Short fluorine-hydrogen contacts are thought to play a key role in stabilizing some complex supramolecular systems. To directly probe the existence of fluorine-hydrogen bonds, we have performed NMR spectroscopy and computational modeling on a series of C2'-fluorinated nucleosides. Specifically, quantum mechanics/molecular mechanics (QM/MM) analysis and [19 F,1 H] HMBC NMR experiments provided direct evidence for a C-H⋅⋅⋅F hydrogen bond in a 2'-F,4'-C-α-alkyl-ribonucleoside analogue. This interaction was also supported by QTAIM and NBO analyses, which confirmed a bond critical point for the C-H⋅⋅⋅F interaction (0.74 kcal mol-1 ). In contrast, although conformational analysis and NMR experiments of 2'-deoxy-2'-fluoro-arabinonucleosides indicated a close proximity between the 2'-fluorine and the H6/8 protons of the nucleobase, molecular simulations did not provide evidence for a C-H⋅⋅⋅F hydrogen bond.

20.
Bioorg Med Chem Lett ; 28(17): 2850-2855, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30076049

ABSTRACT

Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. We previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here we test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.


Subject(s)
Friedreich Ataxia/drug therapy , Iron-Binding Proteins/genetics , RNA, Small Interfering/pharmacology , Trinucleotide Repeat Expansion/drug effects , Cell Line , Dose-Response Relationship, Drug , Friedreich Ataxia/genetics , Humans , Iron-Binding Proteins/metabolism , Molecular Structure , Structure-Activity Relationship , Trinucleotide Repeat Expansion/genetics , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL