Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
BMC Med ; 19(1): 198, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34384441

ABSTRACT

BACKGROUND: The COVID-19 pandemic has disrupted the delivery of immunisation services globally. Many countries have postponed vaccination campaigns out of concern about infection risks to the staff delivering vaccination, the children being vaccinated, and their families. The World Health Organization recommends considering both the benefit of preventive campaigns and the risk of SARS-CoV-2 transmission when making decisions about campaigns during COVID-19 outbreaks, but there has been little quantification of the risks. METHODS: We modelled excess SARS-CoV-2 infection risk to vaccinators, vaccinees, and their caregivers resulting from vaccination campaigns delivered during a COVID-19 epidemic. Our model used population age structure and contact patterns from three exemplar countries (Burkina Faso, Ethiopia, and Brazil). It combined an existing compartmental transmission model of an underlying COVID-19 epidemic with a Reed-Frost model of SARS-CoV-2 infection risk to vaccinators and vaccinees. We explored how excess risk depends on key parameters governing SARS-CoV-2 transmissibility, and aspects of campaign delivery such as campaign duration, number of vaccinations, and effectiveness of personal protective equipment (PPE) and symptomatic screening. RESULTS: Infection risks differ considerably depending on the circumstances in which vaccination campaigns are conducted. A campaign conducted at the peak of a SARS-CoV-2 epidemic with high prevalence and without special infection mitigation measures could increase absolute infection risk by 32 to 45% for vaccinators and 0.3 to 0.5% for vaccinees and caregivers. However, these risks could be reduced to 3.6 to 5.3% and 0.1 to 0.2% respectively by use of PPE that reduces transmission by 90% (as might be achieved with N95 respirators or high-quality surgical masks) and symptomatic screening. CONCLUSIONS: SARS-CoV-2 infection risks to vaccinators, vaccinees, and caregivers during vaccination campaigns can be greatly reduced by adequate PPE, symptomatic screening, and appropriate campaign timing. Our results support the use of adequate risk mitigation measures for vaccination campaigns held during SARS-CoV-2 epidemics, rather than cancelling them entirely.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Health Personnel , Immunization Programs/organization & administration , SARS-CoV-2 , Vaccination , Brazil , Burkina Faso , COVID-19/epidemiology , Child , Ethiopia , Female , Humans , Male , Pandemics , Personal Protective Equipment
2.
BMC Med ; 19(1): 299, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753508

ABSTRACT

BACKGROUND: To reduce the coronavirus disease burden in England, along with many other countries, the government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. METHODS: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020-2021. RESULTS: We report that susceptibility to norovirus infection has likely increased between March 2020 and mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels, the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels, there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. CONCLUSIONS: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced.


Subject(s)
COVID-19 , Norovirus , England/epidemiology , Humans , Models, Theoretical , SARS-CoV-2
3.
Environ Res ; 195: 110748, 2021 04.
Article in English | MEDLINE | ID: mdl-33465345

ABSTRACT

There is increasing interest in wastewater-based epidemiology (WBE) of SARS-CoV-2 RNA to serve as an early warning system for a community. Despite successful detection of SARS-CoV-2 RNA in wastewaters sampled from multiple locations, there is still no clear idea on the minimal number of cases in a community that are associated with a positive detection of the virus in wastewater. To address this knowledge gap, we sampled wastewaters from a septic tank (n = 57) and biological activated sludge tank (n = 52) located on-site of a hospital. The hospital is providing treatment for SARS-CoV-2 infected patients, with the number of hospitalized patients per day known. It was observed that depending on which nucleocapsid gene is targeted by means of RT-qPCR, a range of 253-409 positive cases out of 10,000 persons are required prior to detecting RNA SARS-CoV-2 in wastewater. There was a weak correlation between N1 and N2 gene abundances in wastewater with the number of hospitalized cases. This correlation was however not observed for N3 gene. The frequency of detecting N1 and N2 gene in wastewater was also higher than that for N3 gene. Furthermore, nucleocapsid genes of SARS-CoV-2 were detected at lower frequency in the partially treated wastewater than in the septic tank. In particular, N1 gene abundance was associated with water quality parameters such as total organic carbon and pH. In instances of positive detection, the average abundance of N1 and N3 genes in the activated sludge tank were reduced by 50 and 70% of the levels detected in septic tank, suggesting degradation of the SARS-CoV-2 gene fragments already occurring in the early stages of the wastewater treatment process.


Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks , Humans , RNA, Viral/genetics , Wastewater
4.
BMC Med ; 18(1): 186, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32641039

ABSTRACT

BACKGROUND: Release of virus-blocking Wolbachia-infected mosquitoes is an emerging disease control strategy that aims to control dengue and other arboviral infections. Early entomological data and modelling analyses have suggested promising outcomes, and wMel Wolbachia releases are now ongoing or planned in 12 countries. To help inform government, donor, or philanthropist decisions on scale-up beyond single city releases, we assessed this technology's cost-effectiveness under alternative programmatic options. METHODS: Using costing data from existing Wolbachia releases, previous dynamic model-based estimates of Wolbachia effectiveness, and a spatially explicit model of release and surveillance requirements, we predicted the costs and effectiveness of the ongoing programme in Yogyakarta City and three new hypothetical programmes in Yogyakarta Special Autonomous Region, Jakarta, and Bali. RESULTS: We predicted Wolbachia to be a highly cost-effective intervention when deployed in high-density urban areas with gross cost-effectiveness below $1500 per DALY averted. When offsets from the health system and societal perspective were included, such programmes even became cost saving over 10-year time horizons with favourable benefit-cost ratios of 1.35 to 3.40. Sequencing Wolbachia releases over 10 years could reduce programme costs by approximately 38% compared to simultaneous releases everywhere, but also delays the benefits. Even if unexpected challenges occurred during deployment, such as emergence of resistance in the medium-term or low effective coverage, Wolbachia would remain a cost-saving intervention. CONCLUSIONS: Wolbachia releases in high-density urban areas are expected to be highly cost-effective and could potentially be the first cost-saving intervention for dengue. Sites with strong public health infrastructure, fiscal capacity, and community support should be prioritised.


Subject(s)
Cost-Benefit Analysis/methods , Dengue/economics , Dengue/therapy , Wolbachia/pathogenicity , Animals , Dengue/epidemiology , Humans , Indonesia/epidemiology
5.
Euro Surveill ; 25(18)2020 05.
Article in English | MEDLINE | ID: mdl-32400361

ABSTRACT

For 45 African countries/territories already reporting COVID-19 cases before 23 March 2020, we estimate the dates of reporting 1,000 and 10,000 cases. Assuming early epidemic trends without interventions, all 45 were likely to exceed 1,000 confirmed cases by the end of April 2020, with most exceeding 10,000 a few weeks later.


Subject(s)
Coronavirus Infections , Coronavirus , Disease Outbreaks , Pandemics , Pneumonia, Viral , Africa/epidemiology , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Forecasting , Humans , Models, Statistical , Mortality , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Time Factors
6.
BMC Med ; 17(1): 172, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31495336

ABSTRACT

BACKGROUND: Wolbachia-infected mosquitoes reduce dengue virus transmission, and city-wide releases in Yogyakarta city, Indonesia, are showing promising entomological results. Accurate estimates of the burden of dengue, its spatial distribution and the potential impact of Wolbachia are critical in guiding funder and government decisions on its future wider use. METHODS: Here, we combine multiple modelling methods for burden estimation to predict national case burden disaggregated by severity and map the distribution of burden across the country using three separate data sources. An ensemble of transmission models then predicts the estimated reduction in dengue transmission following a nationwide roll-out of wMel Wolbachia. RESULTS: We estimate that 7.8 million (95% uncertainty interval [UI] 1.8-17.7 million) symptomatic dengue cases occurred in Indonesia in 2015 and were associated with 332,865 (UI 94,175-754,203) lost disability-adjusted life years (DALYs). The majority of dengue's burden was due to non-severe cases that did not seek treatment or were challenging to diagnose in outpatient settings leading to substantial underreporting. Estimated burden was highly concentrated in a small number of large cities with 90% of dengue cases occurring in 15.3% of land area. Implementing a nationwide Wolbachia population replacement programme was estimated to avert 86.2% (UI 36.2-99.9%) of cases over a long-term average. CONCLUSIONS: These results suggest interventions targeted to the highest burden cities can have a disproportionate impact on dengue burden. Area-wide interventions, such as Wolbachia, that are deployed based on the area covered could protect people more efficiently than individual-based interventions, such as vaccines, in such dense environments.


Subject(s)
Aedes/microbiology , Dengue/prevention & control , Models, Theoretical , Pest Control, Biological/methods , Wolbachia , Animals , Cost of Illness , Dengue/epidemiology , Dengue/transmission , Dengue Virus , Humans , Indonesia/epidemiology
7.
BMC Med ; 16(1): 180, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30285863

ABSTRACT

BACKGROUND: Zika virus (ZIKV) emerged in Latin America and the Caribbean (LAC) region in 2013, with serious implications for population health in the region. In 2016, the World Health Organization declared the ZIKV outbreak a Public Health Emergency of International Concern following a cluster of associated neurological disorders and neonatal malformations. In 2017, Zika cases declined, but future incidence in LAC remains uncertain due to gaps in our understanding, considerable variation in surveillance and the lack of a comprehensive collation of data from affected countries. METHODS: Our analysis combines information on confirmed and suspected Zika cases across LAC countries and a spatio-temporal dynamic transmission model for ZIKV infection to determine key transmission parameters and projected incidence in 90 major cities within 35 countries. Seasonality was determined by spatio-temporal estimates of Aedes aegypti vectorial capacity. We used country and state-level data from 2015 to mid-2017 to infer key model parameters, country-specific disease reporting rates, and the 2018 projected incidence. A 10-fold cross-validation approach was used to validate parameter estimates to out-of-sample epidemic trajectories. RESULTS: There was limited transmission in 2015, but in 2016 and 2017 there was sufficient opportunity for wide-spread ZIKV transmission in most cities, resulting in the depletion of susceptible individuals. We predict that the highest number of cases in 2018 would present within some Brazilian States (Sao Paulo and Rio de Janeiro), Colombia and French Guiana, but the estimated number of cases were no more than a few hundred. Model estimates of the timing of the peak in incidence were correlated (p < 0.05) with the reported peak in incidence. The reporting rate varied across countries, with lower reporting rates for those with only confirmed cases compared to those who reported both confirmed and suspected cases. CONCLUSIONS: The findings suggest that the ZIKV epidemic is by and large over within LAC, with incidence projected to be low in most cities in 2018. Local low levels of transmission are probable, but the estimated rate of infection suggests that most cities have a population with high levels of herd immunity.


Subject(s)
Epidemics , Models, Theoretical , Zika Virus Infection/epidemiology , Animals , Humans , Incidence , Latin America/epidemiology , World Health Organization , Zika Virus , Zika Virus Infection/transmission
8.
BMC Infect Dis ; 18(1): 176, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29653509

ABSTRACT

BACKGROUND: To support poliomyelitis eradication in Pakistan, environmental surveillance (ES) of wastewater has been expanded alongside surveillance for acute flaccid paralysis (AFP). ES is a relatively new method of surveillance, and the population sensitivity of detecting poliovirus within endemic settings requires estimation. METHODS: Data for wild serotype 1 poliovirus from AFP and ES from January 2011 to September 2015 from 14 districts in Pakistan were analysed using a multi-state model framework. This framework was used to estimate the sensitivity of poliovirus detection from each surveillance source and parameters such as the duration of infection within a community. RESULTS: The location and timing of poliomyelitis cases showed spatial and temporal variability. The sensitivity of AFP surveillance to detect serotype 1 poliovirus infection in a district and its neighbours per month was on average 30.0% (95% CI 24.8-35.8) and increased with the incidence of poliomyelitis cases. The average population sensitivity of a single environmental sample was 59.4% (95% CI 55.4-63.0), with significant variation in site-specific estimates (median varied from 33.3-79.2%). The combined population sensitivity of environmental and AFP surveillance in a given month was on average 98.1% (95% CI 97.2-98.7), assuming four samples per month for each site. CONCLUSIONS: ES can be a highly sensitive supplement to AFP surveillance in areas with converging sewage systems. As ES for poliovirus is expanded, it will be important to identify factors associated with variation in site sensitivity, leading to improved site selection and surveillance system performance.


Subject(s)
Poliomyelitis/epidemiology , Poliomyelitis/virology , Poliovirus , Sewage/virology , Environmental Monitoring , Humans , Incidence , Interrupted Time Series Analysis , Pakistan/epidemiology , Paralysis/epidemiology , Paralysis/virology , Poliovirus/isolation & purification , Poliovirus/pathogenicity , Serogroup
9.
PLoS Genet ; 11(8): e1005421, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26267488

ABSTRACT

Phylogeographic methods aim to infer migration trends and the history of sampled lineages from genetic data. Applications of phylogeography are broad, and in the context of pathogens include the reconstruction of transmission histories and the origin and emergence of outbreaks. Phylogeographic inference based on bottom-up population genetics models is computationally expensive, and as a result faster alternatives based on the evolution of discrete traits have become popular. In this paper, we show that inference of migration rates and root locations based on discrete trait models is extremely unreliable and sensitive to biased sampling. To address this problem, we introduce BASTA (BAyesian STructured coalescent Approximation), a new approach implemented in BEAST2 that combines the accuracy of methods based on the structured coalescent with the computational efficiency required to handle more than just few populations. We illustrate the potentially severe implications of poor model choice for phylogeographic analyses by investigating the zoonotic transmission of Ebola virus. Whereas the structured coalescent analysis correctly infers that successive human Ebola outbreaks have been seeded by a large unsampled non-human reservoir population, the discrete trait analysis implausibly concludes that undetected human-to-human transmission has allowed the virus to persist over the past four decades. As genomics takes on an increasingly prominent role informing the control and prevention of infectious diseases, it will be vital that phylogeographic inference provides robust insights into transmission history.


Subject(s)
Models, Genetic , Phylogeography/methods , Algorithms , Animal Migration , Animals , Bayes Theorem , Birds , Disease Outbreaks , Ebolavirus/genetics , Evolution, Molecular , Genetic Variation , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Humans , Influenza A virus/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Phylogeny , Plant Diseases , Plant Viruses/genetics , Zoonoses
10.
PLoS Med ; 14(6): e1002323, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604777

ABSTRACT

BACKGROUND: Pakistan currently provides a substantial challenge to global polio eradication, having contributed to 73% of reported poliomyelitis in 2015 and 54% in 2016. A better understanding of the risk factors and movement patterns that contribute to poliovirus transmission across Pakistan would support evidence-based planning for mass vaccination campaigns. METHODS AND FINDINGS: We fit mixed-effects logistic regression models to routine surveillance data recording the presence of poliomyelitis associated with wild-type 1 poliovirus in districts of Pakistan over 6-month intervals between 2010 to 2016. To accurately capture the force of infection (FOI) between districts, we compared 6 models of population movement (adjacency, gravity, radiation, radiation based on population density, radiation based on travel times, and mobile-phone based). We used the best-fitting model (based on the Akaike Information Criterion [AIC]) to produce 6-month forecasts of poliomyelitis incidence. The odds of observing poliomyelitis decreased with improved routine or supplementary (campaign) immunisation coverage (multivariable odds ratio [OR] = 0.75, 95% confidence interval [CI] 0.67-0.84; and OR = 0.75, 95% CI 0.66-0.85, respectively, for each 10% increase in coverage) and increased with a higher rate of reporting non-polio acute flaccid paralysis (AFP) (OR = 1.13, 95% CI 1.02-1.26 for a 1-unit increase in non-polio AFP per 100,000 persons aged <15 years). Estimated movement of poliovirus-infected individuals was associated with the incidence of poliomyelitis, with the radiation model of movement providing the best fit to the data. Six-month forecasts of poliomyelitis incidence by district for 2013-2016 showed good predictive ability (area under the curve range: 0.76-0.98). However, although the best-fitting movement model (radiation) was a significant determinant of poliomyelitis incidence, it did not improve the predictive ability of the multivariable model. Overall, in Pakistan the risk of polio cases was predicted to reduce between July-December 2016 and January-June 2017. The accuracy of the model may be limited by the small number of AFP cases in some districts. CONCLUSIONS: Spatiotemporal variation in immunization performance and population movement patterns are important determinants of historical poliomyelitis incidence in Pakistan; however, movement dynamics were less influential in predicting future cases, at a time when the polio map is shrinking. Results from the regression models we present are being used to help plan vaccination campaigns and transit vaccination strategies in Pakistan.


Subject(s)
Poliomyelitis/epidemiology , Poliovirus/physiology , Population Surveillance , Humans , Immunization , Incidence , Logistic Models , Pakistan/epidemiology , Poliomyelitis/prevention & control , Poliovirus/genetics , Poliovirus/immunology , Risk Factors , Serogroup , Spatio-Temporal Analysis
11.
BMC Infect Dis ; 17(1): 367, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28549485

ABSTRACT

BACKGROUND: The international spread of wild poliomyelitis outbreaks continues to threaten eradication of poliomyelitis and in 2014 a public health emergency of international concern was declared. Here we describe a risk scoring system that has been used to assess country-level risks of wild poliomyelitis outbreaks, to inform prioritisation of mass vaccination planning, and describe the change in risk from 2014 to 2016. The methods were also used to assess the risk of emergence of vaccine-derived poliomyelitis outbreaks. METHODS: Potential explanatory variables were tested against the reported outbreaks of wild poliomyelitis since 2003 using multivariable regression analysis. The regression analysis was translated to a risk score and used to classify countries as Low, Medium, Medium High and High risk, based on the predictive ability of the score. RESULTS: Indicators of population immunity, population displacement and diarrhoeal disease were associated with an increased risk of both wild and vaccine-derived outbreaks. High migration from countries with wild cases was associated with wild outbreaks. High birth numbers were associated with an increased risk of vaccine-derived outbreaks. CONCLUSIONS: Use of the scoring system is a transparent and rapid approach to assess country risk of wild and vaccine-derived poliomyelitis outbreaks. Since 2008 there has been a steep reduction in the number of wild poliomyelitis outbreaks and the reduction in countries classified as High and Medium High risk has reflected this. The risk of vaccine-derived poliomyelitis outbreaks has varied geographically. These findings highlight that many countries remain susceptible to poliomyelitis outbreaks and maintenance or improvement in routine immunisation is vital.


Subject(s)
Poliomyelitis/epidemiology , Poliovirus Vaccines/adverse effects , Risk Assessment/methods , Africa/epidemiology , Asia/epidemiology , Disease Outbreaks , Humans , Mass Vaccination , Poliomyelitis/virology , Poliovirus/pathogenicity , Public Health , Spatio-Temporal Analysis
12.
PLoS Med ; 13(10): e1002140, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27701425

ABSTRACT

BACKGROUND: Global withdrawal of serotype-2 oral poliovirus vaccine (OPV2) took place in April 2016. This marked a milestone in global polio eradication and was a public health intervention of unprecedented scale, affecting 155 countries. Achieving high levels of serotype-2 population immunity before OPV2 withdrawal was critical to avoid subsequent outbreaks of serotype-2 vaccine-derived polioviruses (VDPV2s). METHODS AND FINDINGS: In August 2015, we estimated vaccine-induced population immunity against serotype-2 poliomyelitis for 1 January 2004-30 June 2015 and produced forecasts for April 2016 by district in Nigeria and Pakistan. Population immunity was estimated from the vaccination histories of children <36 mo old identified with non-polio acute flaccid paralysis (AFP) reported through polio surveillance, information on immunisation activities with different oral poliovirus vaccine (OPV) formulations, and serotype-specific estimates of the efficacy of these OPVs against poliomyelitis. District immunity estimates were spatio-temporally smoothed using a Bayesian hierarchical framework. Coverage estimates for immunisation activities were also obtained, allowing for heterogeneity within and among districts. Forward projections of immunity, based on these estimates and planned immunisation activities, were produced through to April 2016 using a cohort model. Estimated population immunity was negatively correlated with the probability of VDPV2 poliomyelitis being reported in a district. In Nigeria and Pakistan, declines in immunity during 2008-2009 and 2012-2013, respectively, were associated with outbreaks of VDPV2. Immunity has since improved in both countries as a result of increased use of trivalent OPV, and projections generally indicated sustained or improved immunity in April 2016, such that the majority of districts (99% [95% uncertainty interval 97%-100%] in Nigeria and 84% [95% uncertainty interval 77%-91%] in Pakistan) had >70% population immunity among children <36 mo old. Districts with lower immunity were clustered in northeastern Nigeria and northwestern Pakistan. The accuracy of immunity estimates was limited by the small numbers of non-polio AFP cases in some districts, which was reflected by large uncertainty intervals. Forecasted improvements in immunity for April 2016 were robust to the uncertainty in estimates of baseline immunity (January-June 2015), vaccine coverage, and vaccine efficacy. CONCLUSIONS: Immunity against serotype-2 poliomyelitis was forecasted to improve in April 2016 compared to the first half of 2015 in Nigeria and Pakistan. These analyses informed the endorsement of OPV2 withdrawal in April 2016 by the WHO Strategic Advisory Group of Experts on Immunization.


Subject(s)
Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/administration & dosage , Child, Preschool , Disease Eradication , Drug Utilization Review , Global Health , Humans , Immunity , Incidence , Infant , Poliomyelitis/epidemiology , Poliovirus/classification , Poliovirus/immunology , Serotyping
13.
Gen Comp Endocrinol ; 228: 24-32, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26808965

ABSTRACT

The steroid hormone testosterone (T) influences a multitude of traits critical to reproduction in vertebrates. In birds, high male T supports territory establishment and mate attraction, but is thought to interfere with parental care. Interspecific comparisons indicate that migratory species with short, synchronous breeding seasons have the highest peak T, and that the seasonal profile of T exhibits a rapid decline with the onset of incubation by females. We describe the T profile of the migratory, socially monogamous, and biparental Eastern Kingbird (Tyrannus tyrannus) from the high desert of eastern Oregon, USA, where breeding occurs within a short 2-3 month period. Eastern Kingbirds are socially monogamous but exhibit high rates of extra-pair paternity as ∼60% of broods contain extra-pair young. We therefore evaluate whether Eastern Kingbirds exhibit the "typical" T profile expected for a synchronously breeding migratory species, or whether T is maintained at a more constant level as would be predicted for a species with opportunities for mating that extend over a majority of the breeding season. Our samples were divided into six periods of the reproductive cycle from territory establishment to the feeding of fledglings. T did not change across stages of the nest cycle. Instead, T declined with sampling date and nest density, and increased with the number of fertile females in the population. Male kingbirds advertise their presence through song for most of the breeding season, and we suggest that T is maintained throughout most of the breeding season because male fitness is equally dependent on within- and extra-pair reproductive success.


Subject(s)
Animal Migration/physiology , Breeding , Passeriformes/physiology , Reproduction/physiology , Sexual Behavior, Animal/physiology , Testosterone/metabolism , Animals , Female , Male , Seasons
14.
Horm Behav ; 66(5): 828-37, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25448533

ABSTRACT

The reproductive success of wild animals usually increases with age before declining at the end of life, but the proximate mechanisms underlying those patterns remain elusive. Young animals are expected to invest less in current reproduction due to high prospects for future reproduction (the "restraint" hypothesis). The oldest animals may also show restraint when conditions are sub-optimal where even a small increase in reproductive investment may lead to death ("terminal restraint"). Alternatively, reproduction may be constrained by lack of experience and senescence (the "constraint" hypothesis). In two species of breeding seabirds, behavioural (time to return the offspring, calmness during restraint) and physiological (metabolism, glucose and corticosterone) parameters responded similarly to stress with advancing age, implying a generalized stress response. Across those parameters, birds were "shy" (high stress response) when young or old, and "bold" (low stress response) when middle-aged. Specifically, free corticosterone, the principal avian glucocorticoid responsible for directing energy away from reproduction and towards immediate survival following stress, was highest in both young and very old stressed birds. All age groups had a similar adrenal capacity to produce corticosterone, implying that middle-aged birds were showing restraint. Because the stress response, was highest at ages when the probability of current reproduction was lowest rather than at ages when the probability of future reproduction was highest we concluded that birds restrained reproductive investment based on current conditions rather than potential future opportunities. In particular, old birds showed terminal restraint when stressed. Hormonal cues promoted investment in adult survival over reproductive output at both the start and end of life consistent with the restraint hypothesis.


Subject(s)
Adaptation, Psychological/physiology , Aging/physiology , Charadriiformes/physiology , Nesting Behavior/physiology , Reproduction/physiology , Adaptation, Psychological/drug effects , Animals , Behavior, Animal/drug effects , Corticosterone/metabolism , Dexamethasone/pharmacology , Female , Longevity/physiology , Male , Nesting Behavior/drug effects , Reproduction/drug effects , Stress, Psychological/etiology , Stress, Psychological/physiopathology
15.
Lancet ; 380(9840): 491-8, 2012 Aug 04.
Article in English | MEDLINE | ID: mdl-22766207

ABSTRACT

BACKGROUND: Pakistan and Afghanistan are two of the three remaining countries yet to interrupt wild-type poliovirus transmission. The increasing incidence of poliomyelitis in these countries during 2010-11 led the Executive Board of WHO in January, 2012, to declare polio eradication a "programmatic emergency for global public health". We aimed to establish why incidence is rising in these countries despite programme innovations including the introduction of new vaccines. METHODS: We did a matched case-control analysis based on a database of 46,977 children aged 0-14 years with onset of acute flaccid paralysis between Jan 1, 2001, and Dec 31, 2011. The vaccination history of children with poliomyelitis was compared with that of children with acute flaccid paralysis due to other causes to estimate the clinical effectiveness of oral poliovirus vaccines (OPVs) in Afghanistan and Pakistan by conditional logistic regression. We estimated vaccine coverage and serotype-specific vaccine-induced population immunity in children aged 0-2 years and assessed their association with the incidence of poliomyelitis over time in seven regions of Afghanistan and Pakistan. FINDINGS: Between Jan 1, 2001, and Dec 31, 2011, there were 883 cases of serotype 1 poliomyelitis (710 in Pakistan and 173 in Afghanistan) and 272 cases of poliomyelitis serotype 3 (216 in Pakistan and 56 in Afghanistan). The estimated clinical effectiveness of a dose of trivalent OPV against serotype 1 poliomyelitis was 12·5% (95% CI 5·6-18·8) compared with 34·5% (16·1-48·9) for monovalent OPV (p=0·007) and 23·4% (10·4-34·6) for bivalent OPV (p=0·067). Bivalent OPV was non-inferior compared with monovalent OPV (p=0·21). Vaccination coverage decreased during 2006-11 in the Federally Administered Tribal Areas (FATA), Balochistan, and Khyber Pakhtunkhwa in Pakistan and in southern Afghanistan. Although partially mitigated by the use of more effective vaccines, these decreases in coverage resulted in lower vaccine-induced population immunity to poliovirus serotype 1 in FATA and Balochistan and associated increases in the incidence of poliomyelitis. INTERPRETATION: The effectiveness of bivalent OPV is comparable with monovalent OPV and can therefore be used in eradicating serotype 1 poliomyelitis whilst minimising the risks of serotype 3 outbreaks. However, decreases in vaccination coverage in parts of Pakistan and southern Afghanistan have severely limited the effect of this vaccine. FUNDING: Poliovirus Research subcommittee of WHO, Royal Society, and Medical Research Council.


Subject(s)
Endemic Diseases/prevention & control , Immunization Programs , Mass Vaccination , Paralysis/virology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/immunology , Acute Disease , Adolescent , Afghanistan/epidemiology , Case-Control Studies , Child , Child, Preschool , Endemic Diseases/statistics & numerical data , Female , Humans , Immunization Programs/organization & administration , Immunization Programs/trends , Incidence , Infant , Infant, Newborn , Logistic Models , Male , Mass Vaccination/methods , Mass Vaccination/trends , Muscle Hypotonia/virology , Pakistan/epidemiology , Poliomyelitis/immunology , Poliovirus/classification , Poliovirus/pathogenicity , World Health Organization
16.
Vaccine ; 41 Suppl 1: A19-A24, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36008232

ABSTRACT

The number and geographic breadth of circulating vaccine-derived poliovirus type 2 (cVDPV2) outbreaks detected after the withdrawal of type 2 containing oral polio vaccine (April 2016) have exceeded forecasts.Using Acute Flaccid Paralysis (AFP) investigations and environmental surveillance (ES) data from the Global Polio Laboratory Network, we summarize the epidemiology of cVDPV2 outbreaks. Between 01 January 2016 to 31 December 2020, a total of 68 unique cVDPV2 genetic emergences were detected across 34 countries. The cVDPV2 outbreaks have been associated with 1596 acute flaccid paralysis cases across four World Health Organization regions: 962/1596 (60.3%) cases occurred in African Region; 619/1596 (38.8%) in the Eastern Mediterranean Region; 14/1596 (0.9%) in Western-Pacific Region; and 1/1596 (0.1%) in the European Region. As the majority of the cVDPV2 outbreaks have been seeded through monovalent type 2 oral poliovirus vaccine (mOPV2) use in outbreak responses, the introduction of the more stable novel oral poliovirus vaccine will be instrumental in stopping emergence of new cVDPV2 lineages.


Subject(s)
Poliomyelitis , Poliovirus , Humans , Poliovirus/genetics , Poliovirus Vaccine, Oral/adverse effects , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Disease Outbreaks/prevention & control , Global Health
17.
Cell Rep Med ; 4(3): 100954, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36854303

ABSTRACT

Human norovirus is the leading cause of acute gastroenteritis. Young children and the elderly bear the greatest burden of disease, representing more than 200,000 deaths annually. Infection prevalence peaks at younger than 2 years and is driven by novel GII.4 variants that emerge and spread globally. Using a surrogate neutralization assay, we characterize the evolution of the serological neutralizing antibody (nAb) landscape in young children as they transition between sequential GII.4 pandemic variants. Following upsurge of the replacement variant, antigenic cartography illustrates remodeling of the nAb landscape to the new variant accompanied by improved nAb titer. However, nAb relative avidity remains focused on the preceding variant. These data support immune imprinting as a mechanism of immune evasion and GII.4 virus persistence across a population. Understanding the complexities of immunity to rapidly evolving and co-circulating viral variants, like those of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), and dengue viruses, will fundamentally inform vaccine design for emerging pathogens.


Subject(s)
COVID-19 , Norovirus , Humans , Child , Child, Preschool , Aged , Antibodies, Viral , Norovirus/genetics , RNA, Viral , Epitopes , SARS-CoV-2 , Antibodies, Neutralizing
18.
Sci Total Environ ; 854: 158636, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36087670

ABSTRACT

BACKGROUND AND AIM: The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission.


Subject(s)
COVID-19 , Humans , Temperature , Humidity , Cities/epidemiology , COVID-19/epidemiology , Incidence , Ultraviolet Rays , China/epidemiology
19.
Nat Commun ; 13(1): 4313, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879277

ABSTRACT

Accurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias. Quantification of SARS-CoV-2 RNA in wastewater can be used to infer infection prevalence, but uncertainty in sensitivity and considerable variability has meant that accurate measurement remains elusive. Here, we use data from 45 sewage sites in England, covering 31% of the population, and estimate SARS-CoV-2 prevalence to within 1.1% of estimates from representative prevalence surveys (with 95% confidence). Using machine learning and phenomenological models, we show that differences between sampled sites, particularly the wastewater flow rate, influence prevalence estimation and require careful interpretation. We find that SARS-CoV-2 signals in wastewater appear 4-5 days earlier in comparison to clinical testing data but are coincident with prevalence surveys suggesting that wastewater surveillance can be a leading indicator for symptomatic viral infections. Surveillance for viruses in wastewater complements and strengthens clinical surveillance, with significant implications for public health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Prevalence , RNA, Viral/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
20.
mBio ; 13(5): e0186122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36102514

ABSTRACT

Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier. Through large-scale sequencing of GII.4 surveillance samples, we identified two variants with extensive divergence within domains that mediate neutralizing antibody binding. Subsequent serological characterization of these strains using temporally resolved adult and child sera suggests that neither candidate could spread globally in adults with multiple GII.4 exposures, yet young children with minimal GII.4 exposure appear susceptible. Antigenic cartography of surveillance and outbreak sera indicates that continued population exposure to GII.4 Sydney 2012 and antigenically related variants over a 6-year period resulted in a broadening of immunity to heterogeneous GII.4 variants, including those identified here. We show that the strongest antibody responses in adults exposed to GII.4 Sydney 2012 are directed to previously circulating GII.4 viruses. Our data suggest that the broadening of antibody responses compromises establishment of strong GII.4 Sydney 2012 immunity, thereby allowing the continued persistence of GII.4 Sydney 2012 and modulating the cycle of norovirus GII.4 variant replacement. Our results indicate a cycle of norovirus GII.4 variant replacement dependent upon population immunity. Young children are susceptible to divergent variants; therefore, emergence of these strains worldwide is driven proximally by changes in adult serological immunity and distally by viral evolution that confers fitness in the context of immunity. IMPORTANCE In our model, preepidemic human norovirus variants harbor genetic diversification that translates into novel antigenic features without compromising viral fitness. Through surveillance, we identified two viruses fitting this profile, forming long branches on a phylogenetic tree. Neither evades current adult immunity, yet young children are likely susceptible. By comparing serological responses, we demonstrate that population immunity varies by age/exposure, impacting predicted susceptibility to variants. Repeat exposure to antigenically similar variants broadens antibody responses, providing immunological coverage of diverse variants but compromising response to the infecting variant, allowing continued circulation. These data indicate norovirus GII.4 variant replacement is driven distally by virus evolution and proximally by immunity in adults.


Subject(s)
Caliciviridae Infections , Norovirus , Adult , Child , Humans , Child, Preschool , Phylogeny , Antibodies, Neutralizing , Disease Outbreaks/prevention & control , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL