Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(10): 1743-1760.e11, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37116497

ABSTRACT

PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.


Subject(s)
ADP-Ribosylation , Histones , Histones/genetics , Histones/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Chromatin , DNA Damage , Antibodies/genetics , Signal Transduction
2.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36265488

ABSTRACT

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Subject(s)
RNA, Long Noncoding , Telomere Homeostasis , Chromatin/genetics , Proteomics , Telomere/genetics , Telomere/metabolism , RNA, Long Noncoding/genetics , Homeostasis
3.
Mol Cell ; 81(12): 2640-2655.e8, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34019811

ABSTRACT

ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.


Subject(s)
Glycoside Hydrolases/metabolism , Poly ADP Ribosylation/physiology , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Cell Line, Tumor , Chromatin , DNA , DNA Damage , Fibroblasts/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/physiology , HEK293 Cells , HeLa Cells , Humans , Poly Adenosine Diphosphate Ribose/metabolism , Primary Cell Culture
4.
Immunity ; 50(1): 51-63.e5, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635239

ABSTRACT

Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , DNA Virus Infections/immunology , DNA Viruses/physiology , RNA Virus Infections/immunology , RNA Viruses/immunology , 2',5'-Oligoadenylate Synthetase/genetics , Animals , Cyclic AMP/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nucleotidyltransferases/metabolism , RNA, Small Interfering/genetics , Signal Transduction , THP-1 Cells , Virus Replication
5.
Mol Cell ; 76(1): 11-26.e7, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31400850

ABSTRACT

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in aggressive cancers. We show that the disruption of RAD51-associated protein 1 (RAD51AP1) in ALT+ cancer cells leads to generational telomere shortening. This is due to RAD51AP1's involvement in RAD51-dependent homologous recombination (HR) and RAD52-POLD3-dependent break induced DNA synthesis. RAD51AP1 KO ALT+ cells exhibit telomere dysfunction and cytosolic telomeric DNA fragments that are sensed by cGAS. Intriguingly, they activate ULK1-ATG7-dependent autophagy as a survival mechanism to mitigate DNA damage and apoptosis. Importantly, RAD51AP1 protein levels are elevated in ALT+ cells due to MMS21 associated SUMOylation. Mutation of a single SUMO-targeted lysine residue perturbs telomere dynamics. These findings indicate that RAD51AP1 is an essential mediator of the ALT mechanism and is co-opted by post-translational mechanisms to maintain telomere length and ensure proliferation of ALT+ cancer cells.


Subject(s)
DNA-Binding Proteins/metabolism , Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Telomere Homeostasis , Telomere/metabolism , Autophagy , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Cell Proliferation , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Homologous Recombination , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Ligases/genetics , Ligases/metabolism , Lysine , Neoplasms/genetics , Neoplasms/pathology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Protein Stability , RNA-Binding Proteins/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Signal Transduction , Sumoylation , Telomere/genetics , Telomere/pathology
6.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696464

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Subject(s)
DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
7.
Nucleic Acids Res ; 51(13): 6509-6527, 2023 07 21.
Article in English | MEDLINE | ID: mdl-36940725

ABSTRACT

Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.


A key feature of all cancer cells is their ability to divide indefinitely, and this is dependent on circumvention of telomere shortening through induction of a telomere maintenance mechanism, such as the telomerase-independent, Alternative Lengthening of Telomeres (ALT) pathway. The ALT pathway is characterised by loss of the ATRX chromatin remodeler. The current study provides evidence that, in the absence of ATRX, increased trapping of proteins on DNA leads to replication fork stalling and collapse. At telomeres, this leads to ALT pathway activity. These results help to better understand ALT tumours and might, eventually, be instrumental in developing new therapeutic strategies.


Subject(s)
Neoplasms , Telomere , Humans , DNA , Neoplasms/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
9.
Gut ; 71(5): 961-973, 2022 05.
Article in English | MEDLINE | ID: mdl-33849943

ABSTRACT

OBJECTIVE: Recent studies have found aristaless-related homeobox gene (ARX)/pancreatic and duodenal homeobox 1 (PDX1), alpha-thalassemia/mental retardation X-linked (ATRX)/death domain-associated protein (DAXX) and alternative lengthening of telomeres (ALT) to be promising prognostic biomarkers for non-functional pancreatic neuroendocrine tumours (NF-PanNETs). However, they have not been comprehensively evaluated, especially among small NF-PanNETs (≤2.0 cm). Moreover, their status in neuroendocrine tumours (NETs) from other sites remains unknown. DESIGN: An international cohort of 1322 NETs was evaluated by immunolabelling for ARX/PDX1 and ATRX/DAXX, and telomere-specific fluorescence in situ hybridisation for ALT. This cohort included 561 primary NF-PanNETs, 107 NF-PanNET metastases and 654 primary, non-pancreatic non-functional NETs and NET metastases. The results were correlated with numerous clinicopathological features including relapse-free survival (RFS). RESULTS: ATRX/DAXX loss and ALT were associated with several adverse prognostic findings and distant metastasis/recurrence (p<0.001). The 5-year RFS rates for patients with ATRX/DAXX-negative and ALT-positive NF-PanNETs were 40% and 42% as compared with 85% and 86% for wild-type NF-PanNETs (p<0.001 and p<0.001). Shorter 5-year RFS rates for ≤2.0 cm NF-PanNETs patients were also seen with ATRX/DAXX loss (65% vs 92%, p=0.003) and ALT (60% vs 93%, p<0.001). By multivariate analysis, ATRX/DAXX and ALT status were independent prognostic factors for RFS. Conversely, classifying NF-PanNETs by ARX/PDX1 expression did not independently correlate with RFS. Except for 4% of pulmonary carcinoids, ATRX/DAXX loss and ALT were only identified in primary (25% and 29%) and NF-PanNET metastases (62% and 71%). CONCLUSIONS: ATRX/DAXX and ALT should be considered in the prognostic evaluation of NF-PanNETs including ≤2.0 cm tumours, and are highly specific for pancreatic origin among NET metastases of unknown primary.


Subject(s)
Intellectual Disability , Neuroendocrine Tumors , Pancreatic Neoplasms , alpha-Thalassemia , Co-Repressor Proteins/genetics , Genes, Homeobox , Homeodomain Proteins , Humans , Intellectual Disability/genetics , Molecular Chaperones/genetics , Neoplasm Recurrence, Local/genetics , Neuroendocrine Tumors/genetics , Nuclear Proteins/genetics , Pancreatic Neoplasms/pathology , Telomere/genetics , Telomere/pathology , Transcription Factors/genetics , X-linked Nuclear Protein/genetics , alpha-Thalassemia/genetics
10.
Nat Rev Mol Cell Biol ; 11(3): 171-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20125188

ABSTRACT

The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.


Subject(s)
Genomic Instability , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/metabolism , Telomere/genetics , Base Sequence , DNA Damage , DNA Repair , Humans , Models, Biological , Telomere/metabolism , Telomere-Binding Proteins/metabolism
12.
Mol Cell ; 55(2): 277-90, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24981170

ABSTRACT

Heterochromatin is required to restrict aberrant expression of retrotransposons, but it remains poorly defined due to the underlying repeat-rich sequences. We dissected Suv39h-dependent histone H3 lysine 9 trimethylation (H3K9me3) by genome-wide ChIP sequencing in mouse embryonic stem cells (ESCs). Refined bioinformatic analyses of repeat subfamilies indicated selective accumulation of Suv39h-dependent H3K9me3 at interspersed repetitive elements that cover ∼5% of the ESC epigenome. The majority of the ∼8,150 intact long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs), but only a minor fraction of the >1.8 million degenerate and truncated LINEs/ERVs, are enriched for Suv39h-dependent H3K9me3. Transcriptional repression of intact LINEs and ERVs is differentially regulated by Suv39h and other chromatin modifiers in ESCs but governed by DNA methylation in committed cells. These data provide a function for Suv39h-dependent H3K9me3 chromatin to specifically repress intact LINE elements in the ESC epigenome.


Subject(s)
Embryonic Stem Cells/enzymology , Endogenous Retroviruses/genetics , Gene Silencing , Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Long Interspersed Nucleotide Elements , Methyltransferases/physiology , Repressor Proteins/physiology , Animals , Cells, Cultured , DNA Methylation , Mice , Protein Processing, Post-Translational
13.
Nucleic Acids Res ; 47(19): 10151-10165, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31665741

ABSTRACT

RAD51 plays a central role in homologous recombination during double-strand break repair and in replication fork dynamics. Misregulation of RAD51 is associated with genetic instability and cancer. RAD51 is regulated by many accessory proteins including the highly conserved Shu complex. Here, we report the function of the human Shu complex during replication to regulate RAD51 recruitment to DNA repair foci and, secondly, during replication fork restart following replication fork stalling. Deletion of the Shu complex members, SWS1 and SWSAP1, using CRISPR/Cas9, renders cells specifically sensitive to the replication fork stalling and collapse caused by methyl methanesulfonate and mitomycin C exposure, a delayed and reduced RAD51 response, and fewer sister chromatid exchanges. Our additional analysis identified SPIDR and PDS5B as novel Shu complex interacting partners and genetically function in the same pathway upon DNA damage. Collectively, our study uncovers a protein complex, which consists of SWS1, SWSAP1, SPIDR and PDS5B, involved in DNA repair and provides insight into Shu complex function and composition.


Subject(s)
Calcium-Binding Proteins/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Nuclear Proteins/genetics , Rec A Recombinases/genetics , Transcription Factors/genetics , CRISPR-Cas Systems/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Genomic Instability/genetics , Humans , Multiprotein Complexes/genetics , Rad51 Recombinase/genetics , Sister Chromatid Exchange/genetics
14.
Gastroenterology ; 154(8): 2060-2063.e8, 2018 06.
Article in English | MEDLINE | ID: mdl-29486199

ABSTRACT

Despite prognostic grading and staging systems, it is a challenge to predict outcomes for patients with pancreatic neuroendocrine tumors (PanNETs). Sequencing studies of PanNETs have identified alterations in death domain-associated protein (DAXX) and alpha-thalassemia/mental retardation X-linked chromatin remodeler (ATRX). In tumors, mutations in DAXX or ATRX and corresponding loss of protein expression correlate with shorter times of disease-free survival and disease-specific survival of patients. However, DAXX or ATRX proteins were lost in only 50% of distant metastases analyzed. We performed whole-exome sequencing analyses of 20 distant metastases from 20 patients with a single nonsyndrome, nonfunctional PanNET. We found distant metastases contained alterations in multiple endocrine neoplasia type 1 (MEN1) (n = 8), ATRX (n = 5), DAXX (n = 5), TSC2 (n = 3), and DEP domain containing 5 (DEPDC5) (n = 3). We found copy number loss of cyclin dependent kinase inhibitor 2A (CDKN2A) in 15 metastases (75%) and alterations in genes that regulate chromatin remodeling, including set domain containing 2 (SETD2) (n = 4), AT-rich interaction domain 1A (ARID1A) (n = 2), chromodomain helicase DNA binding protein 8 (CHD8) (n = 2), and DNA methyl transferase 1 (DNMT1) (n = 2). In a separate analysis of 347 primary PanNETs, we found loss or deletion of DAXX and ATRX, disruption of SETD2 function (based on loss of H3 lysine 36 trimethylation), loss of ARID1A expression or deletions in CDKN2A in 81% of primary PanNETs with distant metastases. Among patients with loss or deletion of at least 1 of these proteins or genes, 39% survived disease-free for 5 years and 44% had disease-specific survival times of 10 years. Among patients without any of these alterations, 98% survived disease-free for 5 years and 95% had disease-specific survival times of 10 years. Therefore, primary PanNETs with loss of DAXX, ATRX, H3 lysine 36 trimethylation, ARID1A, and/or CDKN2A associate with shorter survival times of patients. Our findings indicate that alterations in chromatin-remodeling genes and CDKN2A contribute to metastasis of PanNETs.


Subject(s)
Biomarkers, Tumor/genetics , Cyclin-Dependent Kinase Inhibitor p18/genetics , Neuroendocrine Tumors/genetics , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Chromatin Assembly and Disassembly/genetics , Cyclin-Dependent Kinase Inhibitor p16 , DNA Copy Number Variations , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation , Neuroendocrine Tumors/mortality , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/surgery , Pancreatectomy , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Prognosis , Exome Sequencing
15.
EMBO Rep ; 18(6): 861-863, 2017 06.
Article in English | MEDLINE | ID: mdl-28500256

ABSTRACT

The phenomenon of gradual telomere shortening has become a paradigm for how we understand the biology of aging and cancer. Cell proliferation is accompanied by cumulative telomere loss, and the aged cell either senesces, dies or transforms toward cancer. This transformation requires the activation of telomere elongation mechanisms in order to restore telomere length such that cell death or senescence programs are not induced. Most of the time, this occurs through telomerase reactivation. In other rare cases, the Alternative lengthening of telomeres (ALT) pathway hijacks DNA recombination-associated mechanisms to hyperextend telomeres, often to more than 50 kb. Why telomere length is restricted and what sets their maximal length has been a long-standing puzzle in cell biology. Two recent studies published in this issue of EMBO Reports [1] and recently in Science [2] sought to address this important question. Both built on omics approaches that identified ZBTB48 as a potential telomere-associated protein and reveal it to be a critical regulator of telomere length homeostasis by the telomere trimming mechanism. These discoveries provide fundamental insights for our understanding of telomere trimming and how it impacts telomere integrity in stem and cancer cells.


Subject(s)
Telomerase/genetics , Telomere , Animals , Carrier Proteins , Telomere Homeostasis , Telomere-Binding Proteins , Vertebrates
16.
J Biol Chem ; 292(6): 2470-2484, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28003368

ABSTRACT

Recent genome-wide studies found that patients with hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels suffer from Kaufman oculocerebrofacial syndrome (KOS, also reported as blepharophimosis-ptosis-intellectual disability syndrome). The primary cause of KOS is autosomal recessive mutations in the gene UBE3B However, to date, there are no studies that have determined the cellular or enzymatic function of UBE3B. Here, we report that UBE3B is a mitochondrion-associated protein with homologous to the E6-AP Cterminus (HECT) E3 ubiquitin ligase activity. Mutating the catalytic cysteine (C1036A) or deleting the entire HECT domain (amino acids 758-1068) results in loss of UBE3B's ubiquitylation activity. Knockdown of UBE3B in human cells induces changes in mitochondrial morphology and physiology, a decrease in mitochondrial volume, and a severe suppression of cellular proliferation. We also discovered that UBE3B interacts with calmodulin via its N-terminal isoleucine-glutamine (IQ) motif. Deletion of the IQ motif (amino acids 29-58) results in loss of calmodulin binding and a significant increase in the in vitro ubiquitylation activity of UBE3B. In addition, we found that changes in calcium levels in vitro disrupt the calmodulin-UBE3B interaction. These studies demonstrate that UBE3B is an E3 ubiquitin ligase and reveal that the enzyme is regulated by calmodulin. Furthermore, the modulation of UBE3B via calmodulin and calcium implicates a role for calcium signaling in mitochondrial protein ubiquitylation, protein turnover, and disease.


Subject(s)
Calmodulin/metabolism , Mitochondria/enzymology , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Cell Line, Tumor , Cell Proliferation , Gene Knockdown Techniques , Humans , Sequence Homology, Amino Acid , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
17.
Nature ; 471(7339): 532-6, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21399625

ABSTRACT

Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.


Subject(s)
DNA, Single-Stranded/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA/metabolism , Replication Protein A/metabolism , Telomere-Binding Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Ataxia Telangiectasia Mutated Proteins , Binding, Competitive , Cell Cycle Proteins/metabolism , Cell Extracts , DNA Replication , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Humans , Protein Binding , RNA/genetics , S Phase , Shelterin Complex
18.
Trends Biochem Sci ; 37(11): 466-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22959736

ABSTRACT

During embryogenesis, the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a byproduct of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging.


Subject(s)
Aging , Chromatin Assembly and Disassembly , Animals , Chromatin/metabolism , DNA Repair , Epigenesis, Genetic , Heterochromatin/metabolism , Histones/metabolism , Humans
19.
EMBO J ; 30(3): 480-93, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21179005

ABSTRACT

Mammalian cells possess two isoforms of the histone H3-H4 chaperone anti-silencing function 1 (Asf1), Asf1a and Asf1b. However to date, whether they have individual physiological roles has remained elusive. Here, we aim to elucidate the functional importance of Asf1 isoforms concerning both basic and applied aspects. First, we reveal a specific proliferation-dependent expression of human Asf1b unparalleled by Asf1a. Strikingly, in cultured cells, both mRNA and protein corresponding to Asf1b decrease upon cell cycle exit. Depletion of Asf1b severely compromises proliferation, leads to aberrant nuclear structures and a distinct transcriptional signature. Second, a major physiological implication is found in the applied context of tissue samples derived from early stage breast tumours in which we examined Asf1a/b levels. We reveal that overexpression of Asf1b mRNA correlate with clinical data and disease outcome. Together, our results highlight a distribution of tasks between the distinct Asf1 isoforms, which emphasizes a specialized function of Asf1b required for proliferation capacity. We discuss the implications of these results for breast cancer diagnosis and prognosis.


Subject(s)
Breast Neoplasms/genetics , Cell Cycle Proteins/metabolism , Molecular Chaperones/metabolism , Blotting, Western , Breast Neoplasms/metabolism , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation , Colony-Forming Units Assay , Female , Gene Expression Profiling , Humans , Microscopy, Fluorescence , Predictive Value of Tests , Protein Isoforms/metabolism , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463993

ABSTRACT

Alternative lengthening of telomeres (ALT) pathway maintains telomeres in a significant fraction of cancers associated with poor clinical outcomes. A better understanding of ALT mechanisms can provide a basis for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins plays a critical role in the formation of ALT telomere-associated PML bodies (APBs), where telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, whether and how SUMO contributes to ALT beyond APB formation remains elusive. Here, we report that SUMO promotes collaboration among DNA repair proteins to achieve APB-independent telomere maintenance. By using ALT cancer cells with PML protein knocked out and thus devoid of APBs, we show that sumoylation is required for manifesting ALT features, including telomere clustering and telomeric DNA synthesis, independent of PML and APBs. Further, small molecule-induced telomere targeting of SUMO produces signatures of phase separation and ALT features in PML null cells in a manner depending on both sumoylation and SUMO interaction with SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are linked to the enrichment of DNA repair proteins, including Rad52, Rad51AP1, and BLM, to the SUMO-containing telomere foci. Finally, we find that Rad52 can undergo phase separation, enrich SUMO on telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that, in addition to forming APBs, SUMO also promotes collaboration among DNA repair proteins to support telomere maintenance in ALT cells. Given the promising effects of sumoylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL