Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Phys Chem Chem Phys ; 26(4): 2732-2744, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193196

ABSTRACT

The formation and properties of smart (stimuli-responsive) membranes are reviewed, with a special focus on temperature and pH triggering of gating to water, ions, polymers, nanoparticles, or other molecules of interest. The review is organized in two parts, starting with all-smart membranes based on intrinsically smart materials, in particular of the poly(N-isopropylacrylamide) family and similar polymers. The key steps of membrane fabrication are discussed, namely the deposition into thin films, functionalization of pores, and the secondary crosslinking of pre-existing microgel particles into membranes. The latter may be free-standing and do not necessitate the presence of a porous support layer. The temperature-dependent swelling properties of polymers provide a means of controlling the size of pores, and thus size-sensitive gating. Throughout the review, we highlight "positive" (gates open) or "negative" (closed) gating effects with respect to increasing temperature. In the second part, the functionalization of porous organic or inorganic membranes of various origins by either microgel particles or linear polymer brushes is discussed. In this case, the key steps are the adsorption or grafting mechanisms. Finally, whenever provided by the authors, the suitability of smart gating membranes for specific applications is highlighted.

2.
Eur Phys J E Soft Matter ; 46(6): 46, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326783

ABSTRACT

Small-angle scattering is a commonly used tool to analyze the dispersion of nanoparticles in all kinds of matrices. Besides some obvious cases, the associated structure factor is often complex and cannot be reduced to a simple interparticle interaction, like excluded volume only. In recent experiments, we have encountered a surprising absence of structure factors (S(q) = 1) in scattering from rather concentrated polymer nanocomposites (Genix et al. in ACS Appl Mater Interfaces 11(19):17863-17872, 2019). In this case, quite pure form factor scattering is observed. This somewhat "ideal" structure is further investigated here making use of reverse Monte Carlo simulations in order to shed light on the corresponding nanoparticle structure in space. By fixing the target "experimental" apparent structure factor to one over a given q-range in these simulations, we show that it is possible to find dispersions with this property. The influence of nanoparticle volume fraction and polydispersity has been investigated, and it was found that for high concentrations only a high polydispersity allows reaching a state of S = 1. The underlying structure in real space is discussed in terms of the pair-correlation function, which evidences the importance of attractive interactions between polydisperse nanoparticles. The calculation of partial structure factors shows that there is no specific ordering of large or small particles, but that the presence of attractive interactions together with polydispersity allows reaching an almost "structureless" state.


Subject(s)
Nanocomposites , Suspensions
3.
Soft Matter ; 16(7): 1922-1930, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31995091

ABSTRACT

The radial density profile of deuterated poly(N,n-propyl acrylamide) shell monomers within core-shell microgels has been studied by small-angle neutron scattering in order to shed light on the origin of their linear thermally-induced swelling. The poly(N-isopropyl methacrylamide) core monomers have been contrast-matched by the H2O/D2O solvent mixture, and the intensity thus provides a direct measurement of the spatial distribution of the shell monomers. Straightforward modelling shows that their structure does not correspond to the expected picture of a well-defined external shell. A multi-shell model solved by a reverse Monte Carlo approach is then applied to extract the monomer density as a function of temperature and of the core crosslinking. It is found that most shell monomers fill the core at high temperatures approaching synthesis conditions of collapsed particles, forming only a dilute corona. As the core monomers tend to swell at lower temperatures, a skeleton of insoluble shell monomers hinders swelling, inducing the progressive linear thermoresponse.

4.
Langmuir ; 35(20): 6620-6629, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31042395

ABSTRACT

Nanofilms of about 2 nm thickness have been formed at the air-water interface using functionalized castor oil (ICO) with cross-linkable silylated groups. These hybrid films represent excellent candidates for replacing conventional polymeric materials in biomedical applications, but they need to be optimized in terms of biocompatibility, which is highly related to protein adsorption. Neutron reflectivity has been used to study the adsorption of two model proteins, bovine serum albumin and lysozyme, at the silylated oil (ICO)-water interface in the absence and presence of salt at physiologic ionic strength and pH and at different protein concentrations. These measurements are compared to adsorption at the air-water interface. While salt enhances adsorption by a similar degree at the air-water and oil-water interfaces, the impact of the oil film is significant with adsorption at the oil-water interface 3-4-fold higher compared to that at the air-water interface. Under these conditions, the concentration profiles of the adsorbed layers for both proteins indicate multilayer adsorption. The thickness of the outer layer (oil side) is close to the dimension of the minor axis of the protein molecule, ∼30 Å, suggesting a sideway orientation with the long axis parallel to the interface. The inner layer extends to 55-60 Å. Interestingly, in all cases, the composition of the oil film remains intact without significant protein penetration into the film. The optimal adsorption on these nanofilms, 1.7-2.0 mg·m-2, is comparable to the results obtained recently on thick solid cross-linked films using a quartz crystal microbalance and atomic force microscopy, showing in particular that adsorption at these ICO film interfaces under standard physiological conditions is nonspecific. These results furnish useful information toward the elaboration of vegetable oil-based nanofilms in direct nanoscale applications or as precursor films in the fabrication of thicker macroscopic films for biomedical applications.


Subject(s)
Membranes, Artificial , Models, Chemical , Muramidase/chemistry , Neutron Diffraction , Plant Oils/chemistry , Serum Albumin, Bovine/chemistry , Adsorption
5.
Phys Chem Chem Phys ; 21(2): 572-580, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30539186

ABSTRACT

Stimuli-responsive microgels are colloidal particles and promising candidates for applications such as targeted drug delivery, matrices for catalysts, nanoactuators and smart surface coatings. To tailor the response, the architecture of microgels is of paramount importance with respect to these applications. Statistical copolymer microgels based on N-isopropylmethacrylamide (NiPMAM) and N-n-propylacrylamide (NnPAM) show a cooperative phase transition leading to a collapse at a specific temperature. Interestingly, some core-shell microgel particles reveal a linear response of the hydrodynamic radius with temperature. Such observations were made by photon correlation spectroscopy (PCS), which is limited to the diffusion properties dominated by the particle shell. In this work we investigate the molecular hydration within the network of microgels in H2O by temperature-dependent FTIR spectroscopy. The phase transition temperature was determined by the shift in frequency of the NH bending vibration in homopolymer and statistical copolymer microgels and the results are in accordance with those from PCS. In contrast, experiments on core-shell particles show a broadening and shift of the respective phase transition temperatures of the core and shell indicating an interaction of the core and shell polymers on a molecular level that extends far into the core. In conclusion, temperature-dependent FTIR spectroscopy is a convenient approach to elucidate the internal architecture of complex microgel particles in H2O.

6.
Langmuir ; 34(50): 15403-15415, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30421936

ABSTRACT

The internal structure of nanometric microgels in water has been studied as a function of temperature, cross-linker content, and level of deuteration. Small-angle neutron scattering from poly( N-isopropylmethacrylamide) (volume phase transition ≈ 44 °C) microgel particles of radius well below 100 nm in D2O has been measured. The intensities have been analyzed with a combination of polymer chain scattering and form-free radial monomer volume fraction profiles defined over spherical shells, taking polydispersity in size of the particles determined by atomic force microscopy into account. A reverse Monte Carlo optimization using a limited number of parameters was developed to obtain smoothly decaying profiles in agreement with the experimentally scattered intensities. The results are compared to the swelling curve of microgel particles in the temperature range from 15 to 55 °C obtained from photon correlation spectroscopy (PCS). In addition to hydrodynamic radii measured by PCS, our analysis provides direct information about the internal water content and gradients, the strongly varying steepness of the density profile at the particle-water interface, the total spatial extension of the particles, and the visibility of chains. The model has also been applied to a variation of the cross-linker content, N, N'-methylenebisacrylamide, from 5 to 15 mol %, providing insight on the impact of chain architecture and cross-linking on water uptake and on the definition of the polymer-water interface. The model can easily be generalized to arbitrary monomer contents and types, in particular mixtures of hydrogenated and deuterated species, paving the way to detailed studies of monomer distributions inside more complex microgels, in particular core-shell particles.

7.
Langmuir ; 34(9): 3010-3020, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29443532

ABSTRACT

A new method based on the combination of small-angle scattering, reverse Monte Carlo simulations, and an aggregate recognition algorithm is proposed to characterize the structure of nanoparticle suspensions in solvents and polymer nanocomposites, allowing detailed studies of the impact of different nanoparticle surface modifications. Experimental small-angle scattering is reproduced using simulated annealing of configurations of polydisperse particles in a simulation box compatible with the lowest experimental q-vector. Then, properties of interest like aggregation states are extracted from these configurations and averaged. This approach has been applied to silane surface-modified silica nanoparticles with different grafting groups, in solvents and after casting into polymer matrices. It is shown that the chemistry of the silane function, in particular mono- or trifunctionality possibly related to patch formation, affects the dispersion state in a given medium, in spite of an unchanged alkyl-chain length. Our approach may be applied to study any dispersion or aggregation state of nanoparticles. Concerning nanocomposites, the method has potential impact on the design of new formulations allowing controlled tuning of nanoparticle dispersion.

8.
Soft Matter ; 14(25): 5161-5179, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29893402

ABSTRACT

Recent experimental results using in particular small-angle scattering to characterize the self-assembly of mainly hard spherical nanoparticles into higher ordered structures ranging from fractal aggregates to ordered assemblies are reviewed. The crucial control of interparticle interactions is discussed, from chemical surface-modification, or the action of additives like depletion agents, to the generation of directional patches and the use of external fields. It is shown how the properties of interparticle interactions have been used to allow inducing and possibly controlling aggregation, opening the road to the generation of colloidal molecules or potentially metamaterials. In the last part, studies of the microstructure of polymer nanocomposites as an application of volume-spanning and stress-carrying aggregates are discussed.

9.
Langmuir ; 33(27): 6804-6811, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28628746

ABSTRACT

We study the swelling and shrinking behavior of core-shell microgels adsorbed on silicon wafers. In these systems, the core is made of cross-linked poly(N-isopropylmethacrylamide) and the shell consists of cross-linked poly(N-n-propylacrylamide). In suspension, these particles exhibit an extended linear swelling behavior in the temperature interval between the lower critical solution temperatures of the two polymers. Using ellipsometry and atomic force microscopy, we show that this linear response is also observed in the adsorbed state.

10.
Soft Matter ; 13(44): 8144-8155, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29105722

ABSTRACT

Quantitative characterization of the average structure of dense nanoparticle assemblies and aggregates is a common problem in nanoscience. Small-angle scattering is a suitable technique, but it is usually limited to not too big assemblies due to the limited experimental range, low concentrations to avoid interactions, and monodispersity to keep calculations tractable. In the present paper, a straightforward analysis of the generally available scattered intensity - even for large assemblies, at high concentrations - is detailed, providing information on the local volume fraction of polydisperse particles with hard sphere interactions. It is based on the identical local structure of infinite homogeneous nanoparticle assemblies and their subsets forming finite-sized clusters. This approach is extended to polydispersity, using Monte-Carlo simulations of hard and moderately sticky hard spheres. As a result, a simple relationship between the observed structure factor minimum - termed the correlation hole - and the average local volume fraction κ on the scale of neighboring particles is proposed and validated through independent aggregate simulations. This relationship shall be useful as an efficient tool for the structural analysis of arbitrarily aggregated colloidal systems.

11.
Soft Matter ; 13(26): 4569-4579, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28613327

ABSTRACT

Vegetable oil based hybrid films were developed thanks to a novel solvent- and heating-free method at the air-water interface using silylated castor oil cross-linked via a sol-gel reaction. To understand the mechanism of the hybrid film formation, the reaction kinetics was studied in detail by using complementary techniques: rheology, thermogravimetric analysis, and infrared spectroscopy. The mechanical properties of the final films were investigated using nano-indentation, whereas their structure was studied using a combination of wide-angle X-ray scattering, electron diffraction, and atomic force microscopy. We found that solid and transparent films form in 24 hours and, by changing the silica precursor to castor oil ratio, their mechanical properties are tunable in the MPa-range by about a factor of twenty. In addition to that, a possible optimization of the cross-linking reaction with different catalysts was explored, and finally cytotoxicity tests were performed on fibroblasts proving the absence of film toxicity. The results of this work pave the way to a straightforward synthesis of castor-oil films with tunable mechanical properties: hybrid films cross-linked at the air-water interface combine an easy and cheap spreading protocol with the features of their thermal history optimized for possible future micro/nano drug loading, thus representing excellent candidates for the replacement of non-environmentally friendly petroleum-based materials.

12.
Faraday Discuss ; 186: 295-309, 2016.
Article in English | MEDLINE | ID: mdl-26782937

ABSTRACT

Polymer nanocomposites are used widely, mainly for the industrial application of car tyres. The rheological behavior of such nanocomposites depends in a crucial way on the dispersion of the hard filler particles - typically silica nanoparticles embedded in a soft polymer matrix. It is thus important to assess the filler structure, which may be quite difficult for aggregates of nanoparticles of high polydispersity, and with strong interactions at high loading. This has been achieved recently using a coupled TEM/SAXS structural model describing the filler microstructure of simplified industrial nanocomposites with grafted or ungrafted silica of high structural disorder. Here, we present an original method capable of reducing inter-aggregate interactions by swelling of nanocomposites, diluting the filler to low-volume fractions. Note that this is impossible to reach by solid mixing due to the large differences in viscoelasticity between the composite and the pure polymer. By combining matrix crosslinking, swelling in a good monomer solvent, and post-polymerization of these monomers, it is shown that it is possible to separate the filler into small aggregates. The latter have then been characterized by electron microscopy and small-angle X-ray scattering, confirming the conclusions of the above mentioned TEM-SAXS structural model applied directly to the highly loaded cases.

13.
Langmuir ; 31(40): 10966-74, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26421961

ABSTRACT

An original protocol of simultaneous surface modification and transfer from aqueous to organic phases of anatase TiO2 nanoparticles (NPs) using alkylphosphonic acids (PAs) is studied. The influence of the solvent, the nature and concentration of the PA, and the size, concentration, and aggregation state of the TiO2 NPs was investigated. Complete transfer was observed for linear alkyl chains (5, 8, 12, and 18 C atoms), even at very high sol concentrations. After transfer, the grafted NPs were characterized by (31)P solid-state MAS NMR. The dispersion state of NPs before and after phase transfer was monitored by dynamic light scattering (DLS). Small-angle neutron scattering (SANS) was used to characterize the structure of PA-grafted NPs in the organic solvent. Using a quantitative core-shell model cross-checked under different contrast conditions, it is found that the primary particles making up the NPs are homogeneously grafted with a solvated PA-layer. The nanometric thickness of the latter is shown to increase with the length of the linear carbon chain of the PA, independent of the size of the primary TiO2 NP. Interestingly, a reversible temperature-dependent aggregation was evidenced visually for C18PA, and confirmed by DLS and SANS: heating the sample induces the breakup of aggregates, which reassemble upon cooling. Finally, in the case of NPs agglomerated by playing with the pH or the salt concentration of the sols, the phase transfer with PA is capable of redispersing the agglomerates. This new and highly versatile method of NP surface modification with PAs and simultaneous transfer is thus well suited for obtaining well-dispersed grafted NPs.

14.
Phys Chem Chem Phys ; 17(3): 1660-6, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25436476

ABSTRACT

The existence of two independent filler-dependent high-temperature Maxwell-Wagner-Sillars (MWS) dielectric processes is demonstrated and characterized in detail in silica-filled styrene-butadiene (SB) industrial nanocomposites of simplified composition using Broadband Dielectric Spectroscopy (BDS). The uncrosslinked samples are made with 140 kg mol(-1) SB-chains, half of which carry a single graftable end-function (50% D3), and Zeosil 1165 MP silica incorporated by solid-phase mixing. While one high-temperature process is known to exist in other systems, the dielectric properties of a new silica-related process - strength, relaxation time, and activation energy - have been evidenced and described as a function of silica volume fraction and temperature. In particular, it is shown that its strength follows a percolation behavior as observed with the ionic conductivity and rheology. Moreover, activation energies show the role of polymer layers separating aggregates even when they are percolated. Apart from simultaneous characterization over a broad frequency range up to local polymer and silanol dynamics, it is believed that such high-temperature BDS-measurements can thus be used to detect reorganizations in structurally-complex silica nanocomposites. Moreover, they should contribute to a better identification of dynamical processes via the described sensitivity to structure in such systems.

15.
Phys Chem Chem Phys ; 17(29): 19173-82, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26134150

ABSTRACT

It is often necessary to tailor nanoparticle (NP) interactions and their compatibility with a polymer matrix by grafting organic groups, but the commonly used silanization route offers little versatility, particularly in water. Herein, alumina-coated silica NPs in aqueous sols have been modified for the first time with low molecular-weight phosphonic acids (PAs) bearing organic groups of various hydrophobicities and charges: propyl, pentyl and octyl PAs, and two PAs bearing hydrophilic groups, either a neutral diethylene glycol (DEPA) or a potentially charged carboxylic acid (CAPA) group. The interactions and aggregation in the sols have been investigated using zeta potential measurements, dynamic light scattering, transmission electron microscopy, and small-angle scattering methods. The surface modification has been studied using FTIR and (31)P MAS NMR spectroscopies. Both high grafting density ρ and high hydrophobicity of the groups on the PAs induced aggregation, whereas suspensions of NPs grafted by DEPA remained stable up to the highest ρ. Unexpectedly, CAPA-modified NPs showed aggregation even at low ρ, suggesting that the carboxylic end group was also grafted to the surface. Surface modification of aqueous sols with PAs allows thus for the grafting of a higher density and a wider variety of organic groups than organosilanes, offering an increased control of the interactions between NPs, which is of interest for designing waterborne nanocomposites.

16.
Soft Matter ; 10(35): 6686-95, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25060535

ABSTRACT

The formation of aggregates in simplified industrial styrene-butadiene nanocomposites with silica filler has been studied using a recent model based on a combination of electron microscopy, computer simulations, and small-angle X-ray scattering. The influence of the chain mass (40 to 280 kg mol(-1), PI < 1.1), which sets the linear rheology of the samples, was investigated for a low (9.5 vol%) and high (19 vol%) silica volume fraction. 50% of the chains bear a single graftable end-group, and it is shown that the (chain-mass dependent) grafting density is the structure-determining parameter. A model unifying all available data on this system is proposed and used to determine a critical aggregate grafting density. The latter is found to be closely related to the mushroom-to-brush transition of the grafted layer. To our best knowledge, this is the first comprehensive evidence for the control of the complex nanoparticle aggregate structure in nanocomposites of industrial relevance by the physical parameters of the grafted layer.

17.
Eur Phys J E Soft Matter ; 37(12): 128, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25537095

ABSTRACT

The shape and interactions between microemulsion droplets (R = 8.2 nm, polydispersity 20%) either decorated with PEO modified with a single hydrophobic end function (PEO-m: C12H25 - (EO)n, M(PEO) = 5.2 kg/mol), or with telechelic polymers of twice the mass (PEO-2m: C12H25 - (EO)2n - C12H25, M(PEO) = 10.4 kg/mol) have been studied by small-angle neutron scattering (SANS). The results as a function of droplet and polymer concentration have been compared to the reference case of the bare microemulsion which was shown to be unchanged using Porod representations. The interactions between bare and decorated droplets have been analyzed using the structure factor S(q), at first in a model-free way based on its low-q limit S(q → 0). This analysis provides clear evidence on the concentration-dependent repulsive or attractive nature of the contributions to the pair droplet-droplet pair potential of the polymers. Model pair potentials describing the steric repulsions and attractions by copolymer bridging are used to describe the low-q behavior of the structure factor based on an integral equation approach, giving an estimate of the range and amplitude of the potentials. Moreover, they provide an explanation for the observed transient clustering in terms of a shallow minimum of the total potential, as they establish the respective repulsive and attractive contributions of the polymer molecules.

18.
Nanoscale ; 16(12): 6053-6067, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38421016

ABSTRACT

Mesoporous systems are ubiquitous in membrane science and applications due to their high internal surface area and tunable pore size. A new synthesis pathway of hydrolytic ionosilica films with mesopores formed by ionic liquid (IL) templating is proposed and compared with the traditional non-hydrolytic strategy. For both pathways, the multi-scale formation of pores has been studied as a function of IL content, combining the results of thermogravimetric analysis (TGA), nitrogen sorption, and small-angle X-ray scattering (SAXS). The combination of TGA and nitrogen sorption provides access to ionosilica and pore volume fractions, with contributions of meso- and macropores. We then elaborate an original and quantitative geometrical model to analyze the SAXS data based on small spheres (Rs = 1-2 nm) and cylinders (Lcyl = 10-20 nm) with radial polydispersity provided by the nitrogen sorption isotherms. As a result, we found that for a given incorporation of a templating IL, both synthesis pathways produce very similar pore geometries, but the better incorporation efficacy of the new hydrolytic films provides higher mesoporosity. Our combined study provides a coherent view of mesopore geometry, and thereby an optimization pathway of porous ionic membranes in terms of accessible mesoporosity contributing to the specific surface. Possible applications include electrolyte membranes with improved ionic properties, e.g., in fuel cells and batteries, as well as molecular storage.

19.
ACS Appl Mater Interfaces ; 15(5): 7496-7510, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700938

ABSTRACT

Fundamental understanding of the macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle (NP) arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica NPs. The segmental dynamics has been probed by broadband dielectric spectroscopy and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations. By combining the particle configurations with the interfacial layer properties, it is shown how surface modification tunes the attractive polymer-particle interactions: bare NPs slow down the polymer interfacial layer dynamics over a thickness of ca. 5 nm, while grafting screens these interactions. Our analysis of interparticle spacings and segmental dynamics provides unprecedented insights into the effect of surface modification on the main characteristics of PNCs: particle interactions and polymer interfacial layers.

20.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839117

ABSTRACT

Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect.

SELECTION OF CITATIONS
SEARCH DETAIL