Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079020

ABSTRACT

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Child , Middle Aged , Aged , Glioblastoma/genetics , Glioblastoma/pathology , Immune Checkpoint Inhibitors , Homozygote , Prospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Sequence Deletion , Mutation/genetics , Isocitrate Dehydrogenase/genetics
2.
Acta Neuropathol ; 144(4): 747-765, 2022 10.
Article in English | MEDLINE | ID: mdl-35945463

ABSTRACT

Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Neurofibromatosis 1 , Adult , Astrocytoma/genetics , Brain Neoplasms/genetics , Glioma/genetics , Glioma/pathology , Homozygote , Humans , Neurofibromatosis 1/complications , Neurofibromatosis 1/genetics , Sequence Deletion
3.
J Neurooncol ; 158(3): 453-461, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35639236

ABSTRACT

INTRODUCTION: Tumor Treating Fields (TTFields, 200 kHz) therapy is a noninvasive, locoregional cancer treatment approved for use in newly diagnosed glioblastoma (GBM), recurrent GBM, and malignant pleural mesothelioma. GBM patients with hydrocephalus may require implantation of a ventriculoperitoneal (VP) shunt, however, the current TTFields therapy label does not include the use of VP shunts in GBM patients due to insufficient safety data. This analysis evaluates the safety of TTFields therapy use in this population. METHODS: Unsolicited post-marketing global surveillance data from patients with GBM and a VP shunt (programmable/non-programmable) who received TTFields therapy between November 2012-April 2021 were retrospectively analyzed. Adverse events (AEs) were assessed using the Medical Dictionary for Regulatory Activities version 24.0. RESULTS: Overall, 156 patients with VP shunts were identified and included in this analysis. In total, 77% reported ≥ 1 AE; the most common TTFields therapy-related AEs were non-serious and localized, beneath-array skin AEs (43%). The incidence and categories of AEs were comparable between patients with or without VP shunts. Six patients with VP shunts experienced seven serious TTFields therapy-related AEs: skin erosion at the shunt site (n = 3); wound dehiscence at the shunt site (n = 2) and at the resection scar (n = 2). No shunt malfunctions were deemed related to TTFields therapy. CONCLUSIONS: In the real-world setting, TTFields therapy in GBM patients with VP shunts demonstrated good tolerability and a favorable safety profile. There was no evidence that TTFields therapy disrupted VP shunt effectiveness. These results suggest TTFields therapy may be safely used in patients with VP shunts.


Subject(s)
Glioblastoma , Hydrocephalus , Glioblastoma/surgery , Humans , Hydrocephalus/etiology , Neoplasm Recurrence, Local/surgery , Retrospective Studies , Ventriculoperitoneal Shunt/adverse effects , Ventriculoperitoneal Shunt/methods
4.
Acta Neuropathol ; 140(6): 907-917, 2020 12.
Article in English | MEDLINE | ID: mdl-32892244

ABSTRACT

Paragangliomas are neuroendocrine tumors of the autonomic nervous system that are variably clinically functional and have a potential for metastasis. Up to 40% occur in the setting of a hereditary syndrome, most commonly due to germline mutations in succinate dehydrogenase (SDHx) genes. Immunohistochemically, paragangliomas are characteristically GATA3-positive and cytokeratin-negative, with loss of SDHB expression in most hereditary cases. In contrast, the rare paragangliomas arising in the cauda equina (CEP) or filum terminale region have been shown to be hormonally silent, clinically indolent, and have variable keratin expression, suggesting these tumors may represent a separate pathologic entity. We retrospectively evaluated 17 CEPs from 11 male and 6 female patients with a median age of 38 years (range 21-82), none with a family history of neuroendocrine neoplasia. Six of the 17 tumors demonstrated prominent gangliocytic or ganglioneuromatous differentiation. By immunohistochemistry, none of the CEPs showed GATA3 positivity or loss of SDHB staining; all 17 CEPs were cytokeratin positive. Genome-wide DNA methylation profiling was performed on 12 of the tumors and compared with publicly available genome-wide DNA methylation data. Clustering analysis showed that CEPs form a distinct epigenetic group, separate from paragangliomas of extraspinal sites, pheochromocytomas, and other neuroendocrine neoplasms. Copy number analysis revealed diploid genomes in the vast majority of CEPs, whereas extraspinal paragangliomas were mostly aneuploid with recurrent trisomy 1q and monosomies of 1p, 3, and 11, none of which were present in the cohort of CEP. Together, these findings indicate that CEPs likely represent a distinct entity. Future genomic studies are needed to further elucidate the molecular pathogenesis of these tumors.


Subject(s)
Cauda Equina/pathology , Central Nervous System Neoplasms/genetics , DNA Copy Number Variations/physiology , DNA Methylation/physiology , Immunohistochemistry , Paraganglioma/pathology , Adult , Aged , Aged, 80 and over , Cauda Equina/metabolism , Female , Germ-Line Mutation/genetics , Germ-Line Mutation/physiology , Humans , Immunohistochemistry/methods , Male , Middle Aged , Paraganglioma/genetics , Young Adult
5.
J Neurooncol ; 148(3): 489-500, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32535723

ABSTRACT

INTRODUCTION: Tumor Treating Fields (TTFields; antimitotic treatment) delivers low-intensity, intermediate-frequency, alternating electric fields through skin-applied transducer arrays. TTFields (200 kHz) was FDA-approved in glioblastoma (GBM), based on the phase 3 EF-11 (recurrent GBM, rGBM) and EF-14 (newly diagnosed GBM, ndGBM) trials. The most common TTFields-related adverse event (AE) in both trials was array-associated skin irritation. We now report on TTFields-related AEs in the real-world, clinical practice setting. METHODS: Unsolicited, post-marketing surveillance data from TTFields-treated patients (October 2011-February 2019) were retrospectively analyzed using MedDRA v21.1 preferred terms, stratified by region (US, EMEA [Europe, Middle East, Africa], Japan), diagnosis (ndGBM, rGBM, anaplastic astrocytoma/oligodendroglioma, other brain tumors), and age (< 18 [pediatric], 18-64 [adults], ≥ 65 [elderly]; years of age). RESULTS: Of 11,029 patients, 53% were diagnosed with ndGBM and 39% were diagnosed with rGBM at any line of disease recurrence. Most were adults (73%), 26% were elderly, and the male-to-female ratio was ~ 2:1 (close to published ratios of typical GBM populations). The most commonly reported TTFields-related AE was array-associated skin reaction, occurring in patients with ndGBM (38%), rGBM (29%), anaplastic astrocytoma/oligodendroglioma (38%), and other brain tumors (31%); as well as 37% of pediatric, 34% of adult, and 36% of elderly patients. Most skin AEs were mild/moderate and manageable. Other TTFields-related AEs in patients with ndGBM/rGBM included under-array heat sensation (warmth; 11%, 10%, respectively) and electric sensation (tingling; 11%, 9%, respectively), and headache (7%, 6%, respectively). CONCLUSIONS: This TTFields safety surveillance analysis in > 11,000 patients revealed no new safety concerns, with a favorable safety profile comparable with published TTFields/GBM trials. The safety profile remained consistent among subgroups, suggesting feasibility in multiple populations, including elderly patients.


Subject(s)
Brain Neoplasms/therapy , Electric Stimulation Therapy/methods , Glioma/therapy , Patient Safety , Practice Patterns, Physicians'/statistics & numerical data , Product Surveillance, Postmarketing/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/pathology , Child , Child, Preschool , Female , Follow-Up Studies , Glioma/pathology , Global Health , Humans , Male , Middle Aged , Neoplasm Grading , Retrospective Studies , Young Adult
6.
Acta Neuropathol ; 137(1): 139-150, 2019 01.
Article in English | MEDLINE | ID: mdl-30196423

ABSTRACT

Radiotherapy improves survival for common childhood cancers such as medulloblastoma, leukemia, and germ cell tumors. Unfortunately, long-term survivors suffer sequelae that can include secondary neoplasia. Gliomas are common secondary neoplasms after cranial or craniospinal radiation, most often manifesting as high-grade astrocytomas with poor clinical outcomes. Here, we performed genetic profiling on a cohort of 12 gliomas arising after therapeutic radiation to determine their molecular pathogenesis and assess for differences in genomic signature compared to their spontaneous counterparts. We identified a high frequency of TP53 mutations, CDK4 amplification or CDKN2A homozygous deletion, and amplifications or rearrangements involving receptor tyrosine kinase and Ras-Raf-MAP kinase pathway genes including PDGFRA, MET, BRAF, and RRAS2. Notably, all tumors lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including promoter region), and PTEN, which genetically define the major subtypes of diffuse gliomas in children and adults. All gliomas in this cohort had very low somatic mutation burden (less than three somatic single nucleotide variants or small indels per Mb). The ten high-grade gliomas demonstrated markedly aneuploid genomes, with significantly increased quantity of intrachromosomal copy number breakpoints and focal amplifications/homozygous deletions compared to spontaneous high-grade gliomas, likely as a result of DNA double-strand breaks induced by gamma radiation. Together, these findings demonstrate a distinct molecular pathogenesis of secondary gliomas arising after radiation therapy and identify a genomic signature that may aid in differentiating these tumors from their spontaneous counterparts.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Glioma/genetics , Glioma/radiotherapy , Adolescent , Adult , Astrocytoma/radiotherapy , Biomarkers, Tumor/genetics , Brain Neoplasms/radiotherapy , Child , Child, Preschool , Female , Genomics , Homozygote , Humans , Male , Mutation/genetics , Sequence Deletion/genetics , Telomerase/genetics , Young Adult
7.
J Neurooncol ; 140(2): 477-483, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30151703

ABSTRACT

INTRODUCTION: Alterations in the CDK4/6-RB signaling pathway are common causes of cell cycle dysregulation in many cancers, including glioblastoma. Palbociclib is an oral inhibitor of CDK4/6, which leads to phosphorylation of RB1 and cell-cycle arrest. We conducted a two-arm study evaluating efficacy and tissue pharmacokinetics/pharmacodynamics of palbociclib in patients with recurrent glioblastoma. METHODS: Eligibility criteria included confirmation of RB1 proficiency by IHC; ≤ 3 relapses; KPS ≥ 60; no limit on prior treatments. Arm 1 received palbociclib for 7 days prior to indicated resection followed by adjuvant palbociclib. Arm 2 received palbociclib without resection. Primary objective was PFS6; secondary included toxicity, OS, and ORR. Exploratory aims included biomarker assessment and pharmacokinetic/pharmacodynamic effects in surgical patients. RESULTS: Total of 22 patients were enrolled; 6 on Arm 1 and 16 on Arm 2. Trial was stopped early secondary to lack of efficacy, with 95% of evaluable patients progressing within 6 months. Median PFS was 5.14 weeks (range 5 days-142 weeks) and median OS was 15.4 weeks (range 2-274 weeks). Two patients (10%) had related grade ≥ 3 AEs. In Arm 1, 5 patients had tissue concentrations of palbociclib felt to be sufficient for biological effect and paired samples available for RB1 IHC. There were no consistent changes in RB1 expression or cell proliferation in the paired tissue. CONCLUSION: In this trial, despite adequate tissue PK, palbociclib monotherapy was not an effective treatment for recurrent glioblastoma. However, these were heavily pretreated patients and targeting the CDK4/6 pathway may still deserve further exploration.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Piperazines/therapeutic use , Pyridines/therapeutic use , Adult , Aged , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Combined Modality Therapy , Female , Glioblastoma/metabolism , Glioblastoma/surgery , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/surgery , Piperazines/pharmacokinetics , Piperazines/toxicity , Pyridines/pharmacokinetics , Pyridines/toxicity , Young Adult
9.
Neurochem Res ; 42(9): 2577-2587, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28822066

ABSTRACT

It is now well accepted that astrocytes are essential in all major nervous system functions of the rodent brain, including neurotransmission, energy metabolism, modulation of blood flow, ion and water homeostasis, and, indeed, higher cognitive functions, although the contribution of astrocytes in cognition is still in early stages of study. Here we review the most current research findings on human astrocytes, including their structure, molecular characterization, and functional properties. We also highlight novel tools that have been established for translational approaches to the comparative study of astrocytes from humans and experimental animals. Understanding the differences in astrocytes is essential to elucidate the contribution of astrocytes to normal physiology, cognitive processing and diverse pathologies of the central nervous system.


Subject(s)
Astrocytes/cytology , Astrocytes/physiology , Biological Evolution , Brain/cytology , Brain/physiology , Animals , Hominidae , Humans
11.
Glia ; 62(1): 78-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24272704

ABSTRACT

A flurry of studies over the past decade has shown that astrocytes play a more active role in neural function than previously recognized. Hippocampal slices prepared from young rodent pups have served as a popular model for studying the pathways by which astrocytes participate in synaptic transmission. It is, however, not known how well astrocytes tolerate traumatic injury and hypoxia, which are unavoidable when preparing acute slices. We here showed that astrocytes exhibit striking changes in expression of several receptors and structural proteins, including re-expression of the developmental marker nestin within 90 min following preparation of live vibratome slices. Moreover, immunoelectron microscopy showed a 2.7-fold loss of astrocytic processes in acute hippocampal slices prepared from glial fibrillary acidic protein-green fluorescent protein reporter mice. A sharp decrease in the number of mitochondria was also noted in acute slices, concurrently with an increase in mitochondrial size. Glycogen content decreased 3-fold upon slice preparation and did not recover despite stable recordings of field excitatory postsynaptic current. Analysis of Ca(2+) signaling showed that astrocytic responses to purine receptor and mGluR5 agonists differed in slice versus in vivo. These observations suggest that the functional properties and the fine structure of astrocytes in slices may be reflective of early stages of reactive gliosis and should be confirmed in vivo when possible.


Subject(s)
Astrocytes/metabolism , Gene Expression Regulation/physiology , Gliosis/pathology , Hippocampus/cytology , Hippocampus/injuries , Animals , Animals, Newborn , Aquaporin 4/metabolism , Astrocytes/drug effects , Astrocytes/ultrastructure , Calcium/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Gliosis/etiology , Glycogen/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Lactic Acid/metabolism , Male , Mice , NAD/metabolism , Quaternary Ammonium Compounds/pharmacology
13.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672606

ABSTRACT

This study aimed to develop a rapid, 1 mm3 isotropic resolution, whole-brain MRI technique for automatic lesion segmentation and multi-parametric mapping without using contrast by continuously applying balanced steady-state free precession with inversion pulses throughout incomplete inversion recovery in a single 6 min scan. Modified k-means clustering was performed for automatic brain tissue and lesion segmentation using distinct signal evolutions that contained mixed T1/T2/magnetization transfer properties. Multi-compartment modeling was used to derive quantitative multi-parametric maps for tissue characterization. Fourteen patients with contrast-enhancing gliomas were scanned with this sequence prior to the injection of a contrast agent, and their segmented lesions were compared to conventionally defined manual segmentations of T2-hyperintense and contrast-enhancing lesions. Simultaneous T1, T2, and macromolecular proton fraction maps were generated and compared to conventional 2D T1 and T2 mapping and myelination water fraction mapping acquired with MAGiC. The lesion volumes defined with the new method were comparable to the manual segmentations (r = 0.70, p < 0.01; t-test p > 0.05). The T1, T2, and macromolecular proton fraction mapping values of the whole brain were comparable to the reference values and could distinguish different brain tissues and lesion types (p < 0.05), including infiltrating tumor regions within the T2-lesion. Highly efficient, whole-brain, multi-contrast imaging facilitated automatic lesion segmentation and quantitative multi-parametric mapping without contrast, highlighting its potential value in the clinic when gadolinium is contraindicated.

14.
Cancers (Basel) ; 16(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38254844

ABSTRACT

This study aimed to implement a multimodal 1H/HP-13C imaging protocol to augment the serial monitoring of patients with glioma, while simultaneously pursuing methods for improving the robustness of HP-13C metabolic data. A total of 100 1H/HP [1-13C]-pyruvate MR examinations (104 HP-13C datasets) were acquired from 42 patients according to the comprehensive multimodal glioma imaging protocol. Serial data coverage, accuracy of frequency reference, and acquisition delay were evaluated using a mixed-effects model to account for multiple exams per patient. Serial atlas-based HP-13C MRI demonstrated consistency in volumetric coverage measured by inter-exam dice coefficients (0.977 ± 0.008, mean ± SD; four patients/11 exams). The atlas-derived prescription provided significantly improved data quality compared to manually prescribed acquisitions (n = 26/78; p = 0.04). The water-based method for referencing [1-13C]-pyruvate center frequency significantly reduced off-resonance excitation relative to the coil-embedded [13C]-urea phantom (4.1 ± 3.7 Hz vs. 9.9 ± 10.7 Hz; p = 0.0007). Significantly improved capture of tracer inflow was achieved with the 2-s versus 5-s HP-13C MRI acquisition delay (p = 0.007). This study demonstrated the implementation of a comprehensive multimodal 1H/HP-13C MR protocol emphasizing the monitoring of steady-state/dynamic metabolism in patients with glioma.

15.
Neuro Oncol ; 26(2): 335-347, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37758193

ABSTRACT

BACKGROUND: Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS: We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS: A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION: The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Cancer Vaccines , Glioma , Peptides , Humans , Pilot Projects , Leukocytes, Mononuclear , Prospective Studies , Glioma/drug therapy , Cell Differentiation , Tumor Microenvironment
16.
Cancer Discov ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742767

ABSTRACT

Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival.

18.
Neurooncol Adv ; 5(1): vdad115, 2023.
Article in English | MEDLINE | ID: mdl-37899778

ABSTRACT

Background: Epigenetic inhibition of the O6-methylguanine-DNA-methyltransferase (MGMT) gene has emerged as a clinically relevant prognostic marker in glioblastoma (GBM). Methylation of the MGMT promoter has been shown to increase chemotherapy efficacy. While traditionally reported as a binary marker, recent methodological advancements have led to quantitative methods of measuring promoter methylation, providing clearer insight into its functional relationship with survival. Methods: A CLIA assay and bisulfite sequencing was utilized to develop a quantitative, 17-point, MGMT promoter methylation index. GBMs of 240 newly diagnosed patients were sequenced and risk for mortality was assessed. Nonlinearities were captured by fitting splines to Cox proportional hazard models and plotting smoothed residuals. Covariates included age, Karnofsky performance status, IDH1 mutation, and extent of resection. Results: Median follow-up time and progression-free survival were 16 and 9 months, respectively. A total of 176 subjects experienced death. A one-unit increase in promoter CpG methylation resulted in a 4% reduction in hazard (95% CI 0.93-0.99, P < .005). GBM patients with low levels of promoter methylation (1-6 CpG sites) fared markedly worse (HR = 1.62, 95% CI 1.03-2.54, P < .036) than individuals who were unmethylated. Subjects with medium levels of promoter methylation (7-12 sites) had the greatest reduction in hazard (HR = 0.48, 95% CI 0.29-0.80, P < .004), followed by individuals in the highest promoter methylation tertile (HR = 0.62, 95% CI 0.40-0.97, P < .035). Conclusions: Our findings suggest that the relationship between the extent of MGMT promoter methylation and survival in GBM may be nonlinear. These findings challenge the current understanding of MGMT and underlines the clinical importance of determining its prognostic utility. Potential limitations include censoring, sample size, and extraneous mutations.

19.
Neuroimage Clin ; 39: 103501, 2023.
Article in English | MEDLINE | ID: mdl-37611371

ABSTRACT

BACKGROUND: Dynamic hyperpolarized (HP)-13C MRI has enabled real-time, non-invasive assessment of Warburg-related metabolic dysregulation in glioma using a [1-13C]pyruvate tracer that undergoes conversion to [1-13C]lactate and [13C]bicarbonate. Using a multi-parametric 1H/HP-13C imaging approach, we investigated dynamic and steady-state metabolism, together with physiological parameters, in high-grade gliomas to characterize active tumor. METHODS: Multi-parametric 1H/HP-13C MRI data were acquired from fifteen patients with progressive/treatment-naïve glioblastoma [prog/TN GBM, IDH-wildtype (n = 11)], progressive astrocytoma, IDH-mutant, grade 4 (G4AIDH+, n = 2) and GBM manifesting treatment effects (n = 2). Voxel-wise regional analysis of the cohort with prog/TN GBM assessed imaging heterogeneity across contrast-enhancing/non-enhancing lesions (CEL/NEL) and normal-appearing white matter (NAWM) using a mixed effects model. To enable cross-nucleus parameter association, normalized perfusion, diffusion, and dynamic/steady-state (HP-13C/spectroscopic) metabolic data were collectively examined at the 13C resolution. Prog/TN GBM were similarly compared against progressive G4AIDH+ and treatment effects. RESULTS: Regional analysis of Prog/TN GBM metabolism revealed statistically significant heterogeneity in 1H choline-to-N-acetylaspartate index (CNI)max, [1-13C]lactate, modified [1-13C]lactate-to-[1-13C]pyruvate ratio (CELval > NELval > NAWMval); [1-13C]lactate-to-[13C]bicarbonate ratio (CELval > NELval/NAWMval); and 1H-lactate (CELval/NELval > NAWMundetected). Significant associations were found between normalized perfusion (cerebral blood volume, nCBV; peak height, nPH) and levels of [1-13C]pyruvate and [1-13C]lactate, as well as between CNImax and levels of [1-13C]pyruvate, [1-13C]lactate and modified ratio. GBM, by comparison to G4AIDH+, displayed lower perfusion %-recovery and modeled rate constants for [1-13C]pyruvate-to-[1-13C]lactate conversion (kPL), and higher 1H-lactate and [1-13C]pyruvate levels, while having higher nCBV, %-recovery, kPL, [1-13C]pyruvate-to-[1-13C]lactate and modified ratios relative to treatment effects. CONCLUSIONS: GBM consistently displayed aberrant, Warburg-related metabolism and regional heterogeneity detectable by novel HP-13C/1H imaging techniques.


Subject(s)
Glioblastoma , Glioma , Humans , Bicarbonates , Glioma/diagnostic imaging , Lactic Acid , Glioblastoma/diagnostic imaging , Pyruvic Acid
20.
J Clin Oncol ; 41(11): 2029-2042, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36599113

ABSTRACT

PURPOSE: In patients with diffuse low-grade glioma (LGG), the extent of surgical tumor resection (EOR) has a controversial role, in part because a randomized clinical trial with different levels of EOR is not feasible. METHODS: In a 20-year retrospective cohort of 392 patients with IDH-mutant grade 2 glioma, we analyzed the combined effects of volumetric EOR and molecular and clinical factors on overall survival (OS) and progression-free survival by recursive partitioning analysis. The OS results were validated in two external cohorts (n = 365). Propensity score analysis of the combined cohorts (n = 757) was used to mimic a randomized clinical trial with varying levels of EOR. RESULTS: Recursive partitioning analysis identified three survival risk groups. Median OS was shortest in two subsets of patients with astrocytoma: those with postoperative tumor volume (TV) > 4.6 mL and those with preoperative TV > 43.1 mL and postoperative TV ≤ 4.6 mL. Intermediate OS was seen in patients with astrocytoma who had chemotherapy with preoperative TV ≤ 43.1 mL and postoperative TV ≤ 4.6 mL in addition to oligodendroglioma patients with either preoperative TV > 43.1 mL and residual TV ≤ 4.6 mL or postoperative residual volume > 4.6 mL. Longest OS was seen in astrocytoma patients with preoperative TV ≤ 43.1 mL and postoperative TV ≤ 4.6 mL who received no chemotherapy and oligodendroglioma patients with preoperative TV ≤ 43.1 mL and postoperative TV ≤ 4.6 mL. EOR ≥ 75% improved survival outcomes, as shown by propensity score analysis. CONCLUSION: Across both subtypes of LGG, EOR beginning at 75% improves OS while beginning at 80% improves progression-free survival. Nonetheless, maximal resection with preservation of neurological function remains the treatment goal. Our findings have implications for surgical strategies for LGGs, particularly oligodendroglioma.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Oligodendroglioma , Humans , Oligodendroglioma/pathology , Retrospective Studies , Neurosurgical Procedures/methods , Glioma/pathology , Astrocytoma/pathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL