Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nephrol Dial Transplant ; 37(7): 1261-1269, 2022 06 23.
Article in English | MEDLINE | ID: mdl-34850173

ABSTRACT

BACKGROUND: The nonsteroidal mineralocorticoid receptor antagonist finerenone and the sodium-glucose cotransporter-2 inhibitor (SGLT-2i) canagliflozin reduce cardiorenal risk in albuminuric patients with chronic kidney disease (CKD) and type 2 diabetes (T2D). At first glance, the results of Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) (ClinicalTrials.gov, NCT02540993) and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) appear disparate. In FIDELIO-DKD, the primary endpoint had an 18% [95% confidence interval (CI) 7-27] relative risk reduction; in CREDENCE, the primary endpoint had a 30% (95% CI 18-41) relative risk reduction. Unlike CREDENCE, the FIDELIO-DKD trial included patients with high albuminuria but excluded patients with symptomatic heart failure with reduced ejection fraction. The primary endpoint in the FIDELIO-DKD trial was kidney specific and included a sustained decline in the estimated glomerular filtration rate (eGFR) of ≥40% from baseline. In contrast, the primary endpoint in the CREDENCE trial included a sustained decline in eGFR of ≥57% from baseline and cardiovascular (CV) death. This post hoc exploratory analysis investigated how differences in trial design-inclusion/exclusion criteria and definition of primary outcomes-influenced observed treatment effects. METHODS: Patients from FIDELIO-DKD who met the CKD inclusion criteria of the CREDENCE study (urine albumin: creatinine ratio >300-5000 mg/g and an eGFR of 30-<90 mL/min/1.73 m2 at screening) were included in this analysis. The primary endpoint was a cardiorenal composite (CV death, kidney failure, eGFR decrease of ≥57% sustained for ≥4 weeks or renal death). Patients with symptomatic heart failure with reduced ejection fraction were excluded from FIDELIO-DKD. Therefore, in a sensitivity analysis, we further adjusted for the baseline prevalence of heart failure. RESULTS: Of 4619/5674 (81.4%) patients who met the subgroup inclusion criteria, 49.6% were treated with finerenone and 50.4% received placebo. The rate of the cardiorenal composite endpoint was 43.9/1000 patient-years with finerenone compared with 59.5/1000 patient-years with placebo. The relative risk was significantly reduced by 26% with finerenone versus placebo [hazard ratio (HR) 0.74 (95% CI 0.63-0.87)]. In CREDENCE, the rate of the cardiorenal composite endpoint was 43.2/1000 patient-years with canagliflozin compared with 61.2/1000 patient-years with placebo; a 30% risk reduction was observed with canagliflozin [HR 0.70 (95% CI 0.59-0.82)]. CONCLUSIONS: This analysis highlights the pitfalls of direct comparisons between trials. When key differences in trial design are considered, FIDELIO-DKD and CREDENCE demonstrate cardiorenal benefits of a similar magnitude.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Heart Failure , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Canagliflozin/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Heart Failure/drug therapy , Humans , Naphthyridines , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
2.
Kidney Int Rep ; 8(11): 2198-2210, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38025243

ABSTRACT

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.

3.
Article in English | MEDLINE | ID: mdl-34172436

ABSTRACT

INTRODUCTION: To evaluate the effects of efpeglenatide, a long-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA), on gastric emptying, glucose metabolism, and islet beta-cell function versus liraglutide and placebo in people with type 2 diabetes. RESEARCH DESIGN AND METHODS: This phase Ib study (ClinicalTrials.gov identifier: NCT02059564) randomized participants (n=47) to three cohorts. Within the first two cohorts, participants were randomized to placebo, efpeglenatide 6 mg weekly (QW; first cohort), or efpeglenatide 16 mg monthly (QM; second cohort). The third cohort received liraglutide 1.8 mg daily (QD). Gastric emptying was assessed through the pharmacokinetic (PK) profile of acetaminophen at baseline and steady state. Glucose metabolism and beta-cell function were assessed based on mixed-meal tolerance testing and a graded glucose infusion procedure. RESULTS: Treatment duration was approximately 3 months for efpeglenatide 16 mg QM and 1 month for efpeglenatide 6 mg QW and liraglutide. At peak drug concentrations, efpeglenatide 6 mg QW was non-inferior to liraglutide 1.8 mg QD in delaying gastric emptying, as assessed by acetaminophen PK (lower bound of 90% CI for the efpeglenatide:liraglutide ratio >0.8 for area under the curve (AUC)0-120, AUC0-180, AUC0-360 and maximum concentration (Cmax)). Efpeglenatide 16 mg QM did not decrease the rate of gastric emptying to as great an extent as liraglutide (ie, non-inferiority was not shown). Compared with liraglutide, both efpeglenatide dosing regimens demonstrated comparable or more favorable glucometabolic effects and improved beta-cell function. All gastrointestinal adverse events reported with efpeglenatide were mild or moderate in severity and transient over treatment and follow-up. CONCLUSIONS: The glucometabolic effects of efpeglenatide 6 mg QW and 16 mg QM were comparable to liraglutide. Additional studies are necessary to further examine these benefits of efpeglenatide. TRIAL REGISTRATION NUMBER: NCT02059564.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Gastric Emptying , Glucose , Humans , Liraglutide/therapeutic use , Proline
4.
Diabetes Care ; 38(3): 431-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25216510

ABSTRACT

OBJECTIVE: To assess the dose-ranging efficacy and safety of LX4211, a dual inhibitor of sodium-glucose cotransporter (SGLT) 1 and SGLT2, in type 2 diabetes. RESEARCH DESIGN AND METHODS: Type 2 diabetic patients inadequately controlled on metformin were randomly assigned to 75 mg once daily, 200 mg once daily, 200 mg twice daily, or 400 mg once daily of LX4211 or placebo. Primary end point was A1C change from baseline to week 12. Secondary end points included changes in blood pressure (BP) and body weight. RESULTS: Baseline characteristics in 299 patients randomly assigned to LX4211 or placebo in this 12-week dose-ranging study were similar: mean age 55.9 years, A1C 8.1% (65 mmol/mol), BMI 33.1 kg/m(2), and BP 124/79 mmHg. LX4211 significantly reduced A1C to week 12 in a dose-dependent manner by 0.42% (4.6 mmol/mol), 0.52% (5.7 mmol/mol), 0.80% (8.7 mmol/mol), and 0.92% (10.0 mmol/mol), respectively (P < 0.001 each), compared with 0.09% (1.0 mmol/mol) for placebo. Greater A1C reductions were produced by 400 mg once a day than 200 mg once a day LX4211 without higher urinary glucose excretion, suggesting a contribution of SGLT1 inhibition. Significant reductions were seen in body weight (-1.85 kg; P < 0.001) and systolic BP (-5.7 mmHg; P < 0.001), but diastolic BP was unchanged (-1.6; P = 0.164). Adverse events with LX4211 were mild to moderate and similar to placebo, including urinary tract infections and gastrointestinal-related events; genital infections were limited to LX4211 groups (0-5.0%). No hypoglycemia occurred. CONCLUSIONS: Dual inhibition of SGLT1/SGLT2 with LX4211 produced significant dose-ranging improvements in glucose control without dose-increasing glucosuria and was associated with reductions in weight and systolic BP in metformin-treated patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycosides/administration & dosage , Hypoglycemic Agents/administration & dosage , Adult , Aged , Blood Glucose/drug effects , Blood Pressure/drug effects , Double-Blind Method , Drug Administration Schedule , Female , Glycated Hemoglobin/drug effects , Glycosides/adverse effects , Glycosuria/chemically induced , Humans , Hypoglycemia/drug therapy , Hypoglycemic Agents/adverse effects , Male , Metformin/therapeutic use , Middle Aged , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Treatment Outcome , Weight Loss/drug effects
5.
Clin Ther ; 37(1): 71-82.e12, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25529979

ABSTRACT

PURPOSE: We sought to assess the efficacy and safety profile of LX4211, a dual inhibitor of sodium-glucose cotransporter1 (SGLT1) and SGLT2, in patients with type 2 diabetes and renal impairment. METHODS: Thirty-one patients with an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m(2) were randomly assigned to receive 400 mg of LX4211 or placebo for 7 days. The primary end point was the change from baseline to day 7 in postprandial glucose (PPG) levels. Other end points included changes in fasting plasma glucose levels, glucagon-like peptide 1 levels, urinary glucose excretion (UGE), and blood pressure. FINDINGS: LX4211 therapy significantly reduced PPG levels relative to placebo in the total population and in patients with an eGFR <45 mL/min/1.73 m(2), with a placebo-adjusted decrease in incremental AUCpredose-4 of 73.5 mg·h/dL (P = 0.009) and 137.2 mg·h/dL (P = 0.001) for the total population and the eGFR <45 mL/min/1.73 m(2) subgroup, respectively. There was a significant reduction in fasting plasma glucose levels relative to baseline of -27.1 mg/dL (P < 0.001). Total and active glucagon-like peptide 1 levels were significantly elevated relative to placebo with LX4211 dosing, and UGE was significantly elevated with placebo-subtracted measures of 38.7, 53.5, and 20.4 g/24 h (P ≤ 0.007 for all 3) in the total population, eGFR 45 to 59 mL/min/1.73 m(2), and eGFR <45 mL/min/1.73 m(2) subgroups, respectively. IMPLICATIONS: The PPG effects were maintained in patients with an eGFR <45 mL/min/1.73 m(2) despite the expected reduction in UGE, suggesting that dual SGLT1 and SGLT2 inhibition with LX4211 could prove useful for the treatment of patients with type 2 diabetes and renal impairment. ClinicalTrials.gov identifier: NCT01555008.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Glycosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Female , Glucagon-Like Peptide 1/blood , Glycosides/pharmacology , Glycosuria/blood , Humans , Hypoglycemic Agents/pharmacology , Male , Middle Aged , Postprandial Period/drug effects , Renal Insufficiency/blood , Renal Insufficiency/complications , Renal Insufficiency/physiopathology
6.
Clin Ther ; 35(3): 273-285.e7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23433601

ABSTRACT

BACKGROUND: Combination therapy is required to provide adequate glycemic control in many patients with type 2 diabetes mellitus (T2DM). Because sodium-dependent glucose transporter (SGLT)-1 inhibition results in an increased release of glucagon-like peptide (GLP)-1, and because dipeptidyl peptidase (DPP)-4 inhibitors prevent its inactivation, the 2 mechanisms together provide an intriguing potential combination therapy. OBJECTIVES: This combination was explored in preclinical models and then tested in patients with T2DM to compare the effects of single-dose LX4211 400 mg and sitagliptin 100 mg, administered as monotherapy or in combination, on GLP-1, peptide tyrosine tyrosine (PYY), gastric inhibitory peptide (GIP), glucose, and insulin. METHODS: Preclinical: Obese male C57BL6J mice were assigned to 1 of 4 treatment groups: LX4211 60 mg/kg, sitagliptin 30 mg/kg, LX4211 + sitagliptin, or inactive vehicle. Clinical: This 3-treatment, 3-crossover, randomized, open-label study was conducted at a single center. Patients on metformin monotherapy were washed out from metformin and were randomly assigned to receive sequences of single-dose LX4211, sitagliptin, or the combination. In both studies, blood was collected for the analysis of pharmacodynamic variables (GLP-1, PYY, GIP, glucose, and insulin). In the clinical study, urine was collected to assess urinary glucose excretion. RESULTS: Preclinical: 120 mice were treated and assessed (5/time point/treatment group). With repeat daily dosing, the combination was associated with apparently synergistic increases in active GLP-1 relative to monotherapy with either agent; this finding was supported by findings from an additional 14-day repeated-dose experiment. Clinical: 18 patients were enrolled and treated (mean age, 49 years; 56% male; 89% white). The LX4211 + sitagliptin combination was associated with significantly increased active GLP-1, total GLP-1, and total PYY; with a significant reduction in total GIP; and with a significantly improved blood glucose level, with less insulin, compared with sitagliptin monotherapy. LX4211 was associated with a significant increase in total GLP-1 and PYY and a reduced total GIP, likely due to a reduction in SGLT1-mediated intestinal glucose absorption, whereas sitagliptin was associated with suppression of all 3 peptides relative to baseline. All treatments were well tolerated, with no evidence of diarrhea with LX4211 treatment. CONCLUSIONS: The findings from the preclinical studies suggest that the LX4211 + sitagliptin combination produced synergistic increases in active GLP-1 after a meal challenge containing glucose. These initial clinical results also suggest that a LX4211 + DPP-4 inhibitor combination may provide an option in patients with T2DM. The potential long-term clinical benefits of such combination treatment need to be confirmed in large clinical trials. ClinicalTrials.gov identifier: NCT01441232.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/blood , Glycosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Postprandial Period , Pyrazines/therapeutic use , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Triazoles/therapeutic use , Animals , Cross-Over Studies , Diabetes Mellitus, Type 2/blood , Enzyme-Linked Immunosorbent Assay , Glycosides/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Mice , Pyrazines/pharmacology , Sitagliptin Phosphate , Sodium-Glucose Transporter 2 , Triazoles/pharmacology
7.
Clin Ther ; 35(8): 1162-1173.e8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23911260

ABSTRACT

BACKGROUND: LX4211 is a first-in-class dual inhibitor of sodium-dependent glucose cotransporters 1 and 2 (SGLT1 and SGLT2). SGLT1 is the primary transporter for glucose absorption from the gastrointestinal tract, and SGLT2 is the primary transporter for glucose reabsorption in the kidney. SGLT1 inhibition reduces postprandial glucose (PPG) levels and increases the release of gastrointestinal peptides such as glucagon-like peptide 1 (GLP-1) and peptide tyrosine tyrosine (PYY), whereas SGLT2 inhibition results in increased urinary glucose excretion (UGE). OBJECTIVES: This study evaluated how timing of dose relative to meals changes the pharmacodynamic (PD) effects of LX4211 treatment, including effects on UGE, fasting plasma glucose, PPG, insulin, total and active GLP-1, and PYY. The safety and tolerability of LX4211 in healthy subjects were also assessed. METHODS: This was a randomized, double-blind, placebo-controlled, multiple-dose study to determine the PD effects of LX4211 dose timing relative to meals in 12 healthy subjects. Blood and urine were collected for the analysis of PD variables. RESULTS: Twelve healthy subjects 30 to 51 years of age were enrolled and treated. Treatment with LX4211 resulted in significant elevation of total and active GLP-1, and PYY while significantly decreasing PPG levels relative to placebo, likely by reducing SGLT1-mediated intestinal glucose absorption. Comparisons performed among the dosing schedules indicated that dosing immediately before breakfast maximized the PD effects of LX4211 on both SGLT1 and SGLT2 inhibition. The comparative results suggested distinct SGLT1 effects on GLP-1, PYY, glucose, and insulin, which were separate from SGLT2-mediated effects, indicating that SGLT1 inhibition with LX4211 may be clinically meaningful. All treatments were well tolerated with no evidence of diarrhea with LX4211 treatment. CONCLUSIONS: This clinical study indicates that dosing of LX4211 immediately before breakfast maximized the PD effects of both SGLT1 and SGLT 2 inhibition and provided a convenient dosing schedule for future trials. LX4211 was safe and well tolerated and, due to its SGLT1 inhibition, produced strong PPG reductions and low UGE relative to selective SGLT2 inhibitors. LX4211 may provide a promising new therapy for patients with type 2 diabetes mellitus. The potential long-term clinical benefits and safety of LX4211 treatment will need to be confirmed in large clinical trials. ClinicalTrials.gov identifier: NCT01334242.


Subject(s)
Blood Glucose/analysis , Dipeptides/blood , Glucagon-Like Peptide 1/blood , Glycosides/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/blood , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Glycosides/pharmacology , Healthy Volunteers , Humans , Hypoglycemic Agents/pharmacology , Male , Meals , Middle Aged , Postprandial Period , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors
8.
Clin Cardiol ; 36(7): 367-71, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23630033

ABSTRACT

Sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) are the major cellular transporters responsible for gastrointestinal (GI) glucose absorption and renal glucose reabsorption, respectively. LX4211, a dual inhibitor of SGLT1 and SGLT2, reduces glucose absorption from the GI tract and enhances urinary glucose excretion. Although several SGLT2-selective inhibitors have been tested in large phase 2 studies, dual inhibition of SGLT1 and SGLT2 is novel at this stage of drug development, and it has implications for clinical-trial design. In this article, we describe the design and rationale of a phase 2, multicenter, randomized, double-blind, placebo-controlled, parallel group study to evaluate the safety and efficacy of LX4211 in subjects with type 2 diabetes mellitus who have inadequate glycemic control on metformin monotherapy. The primary endpoint is the change in glycated hemoglobin A1c from baseline to week 12. Secondary endpoints include the proportion of subjects achieving a glycated hemoglobin A1c value of <7%, change from baseline in fasting plasma glucose and postprandial glucose (as part of an oral glucose tolerance test), body weight, and blood pressure. Safety is evaluated with particular focus on hypoglycemia, GI symptoms, and incidence of genitourinary tract infections.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Glycosides/administration & dosage , Hypoglycemic Agents/administration & dosage , Metformin/administration & dosage , Research Design , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Biomarkers/blood , Blood Glucose/metabolism , Clinical Protocols , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Double-Blind Method , Female , Gastrointestinal Diseases/chemically induced , Glycated Hemoglobin/metabolism , Glycosides/adverse effects , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Male , Middle Aged , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Time Factors , Treatment Failure , United States , Urinary Tract Infections/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL