Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Antimicrob Agents Chemother ; 67(10): e0042423, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37695304

ABSTRACT

We have previously reported promising in vivo activity of the first-generation 2-aminopyramidine robenidine analogue NCL195 against Gram-positive bacteria (GPB) when administered via the systemic route. In this study, we examined the efficacy of oral treatment with NCL195 (± low-dose colistin) in comparison to oral moxifloxacin in bioluminescent Staphylococcus aureus and Escherichia coli peritonitis-sepsis models. Four oral doses of 50 mg/kg NCL195, commencing immediately post-infection, were administered at 4 h intervals in the S. aureus peritonitis-sepsis model. We used a combination of four oral doses of 50 mg/kg NCL195 and four intraperitoneal doses of colistin at 0.125 mg/kg, 0.25 mg/kg, or 0.5 mg/kg in the E. coli peritonitis-sepsis model. Subsequently, the dose rates of four intraperitoneal doses of colistin were increased to 0.5 mg/kg, 1 mg/kg, or 2 mg/kg at 4 h intervals to treat a colistin-resistant E. coli infection. In the S. aureus infection model, oral treatment of mice with NCL195 resulted in significantly reduced S. aureus infection loads (P < 0.01) and longer survival times (P < 0.001) than vehicle-only treated mice. In the E. coli infection model, co-administration of NCL195 and graded doses of colistin resulted in a dose-dependent significant reduction in colistin-susceptible (P < 0.01) or colistin-resistant (P < 0.05) E. coli loads compared to treatment with colistin alone at similar concentrations. Our results confirm that NCL195 is a potential candidate for further preclinical development as a specific treatment for multidrug-resistant infections, either as a stand-alone antibiotic for GPB or in combination with sub-inhibitory concentrations of colistin for Gram-negative bacteria.


Subject(s)
Bacteremia , Escherichia coli Infections , Peritonitis , Sepsis , Staphylococcal Infections , Mice , Animals , Colistin/pharmacology , Colistin/therapeutic use , Staphylococcus aureus , Escherichia coli , Robenidine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/microbiology , Staphylococcal Infections/drug therapy , Peritonitis/drug therapy , Sepsis/drug therapy , Bacteremia/drug therapy , Administration, Oral , Microbial Sensitivity Tests
2.
Org Biomol Chem ; 19(5): 1022-1036, 2021 02 07.
Article in English | MEDLINE | ID: mdl-33443509

ABSTRACT

In this study, we report the semisynthesis and in vitro biological evaluation of thirty-four derivatives of the fungal depsidone antibiotic, unguinol. Initially, the semisynthetic modifications were focused on the two free hydroxy groups (3-OH and 8-OH), the three free aromatic positions (C-2, C-4 and C-7), the butenyl side chain and the depsidone ester linkage. Fifteen first-generation unguinol analogues were synthesised and screened against a panel of bacteria, fungi and mammalian cells to formulate a basic structure activity relationship (SAR) for the unguinol pharmacophore. Based on the SAR studies, we synthesised a further nineteen second-generation analogues, specifically aimed at improving the antibacterial potency of the pharmacophore. In vitro antibacterial activity testing of these compounds revealed that 3-O-(2-fluorobenzyl)unguinol and 3-O-(2,4-difluorobenzyl)unguinol showed potent activity against both methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MIC 0.25-1 µg mL-1) and are promising candidates for further development in vivo.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Cell Line , Chemistry Techniques, Synthetic , Drug Evaluation, Preclinical , Heterocyclic Compounds, 3-Ring/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests
3.
Food Microbiol ; 93: 103614, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32912586

ABSTRACT

There are growing demands globally to use safe, efficacious and environmentally friendly sanitizers for post-harvest treatment of fresh produce to reduce or eliminate spoilage and foodborne pathogens. Here, we compared the efficacy of a pH-neutral electrolyzed oxidizing water (Ecas4 Anolyte; ECAS) with that of an approved peroxyacetic acid-based sanitizer (Ecolab Tsunami® 100) in reducing the total microbial load and inoculated Escherichia coli, Salmonella Enteritidis and Listeria innocua populations on post-harvest baby spinach leaves over 10 days. The impact of both sanitizers on the overall quality of the spinach leaves during storage was also assessed by shelf life and vitamin C content measurements. ECAS at 50 ppm and 85 ppm significantly reduced the bacterial load compared to tap water-treated or untreated (control) leaves, and at similar levels (approx. 10-fold reduction) to those achieved using 50 ppm of Ecolab Tsunami® 100. While there were no obvious deleterious effects of treatment with 50 ppm Tsunami® 100 or ECAS at 50 ppm and 85 ppm on plant leaf appearance, tap water-treated and untreated leaves showed some yellowing, bruising and sliming. Given its safety, efficacy and environmentally-friendly characteristics, ECAS could be a viable alternative to chemical-based sanitizers for post-harvest treatment of fresh produce.


Subject(s)
Electrolysis , Food Contamination/analysis , Plant Leaves/microbiology , Spinacia oleracea/microbiology , Water/chemistry , Bacteria/classification , Escherichia coli , Food Microbiology , Food Safety , Food Storage , Foodborne Diseases/microbiology , Hydrogen-Ion Concentration , Listeria , Oxidation-Reduction , Peracetic Acid , Salmonella enteritidis , Temperature
4.
Food Microbiol ; 93: 103610, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32912583

ABSTRACT

Pre-harvest sanitization of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (~1 × 108 colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.


Subject(s)
Decontamination , Electrolysis , Food Microbiology , Plant Leaves/microbiology , Water/chemistry , Chlorine , Disinfection , Foodborne Diseases/microbiology , Lactuca/microbiology , Listeria , Plants/microbiology , RNA, Ribosomal, 16S , Radioisotopes , Sodium Hypochlorite/chemistry , Spinacia oleracea/microbiology
5.
Emerg Infect Dis ; 26(7): 1399-1408, 2020 07.
Article in English | MEDLINE | ID: mdl-32568051

ABSTRACT

Using questionnaires and serologic testing, we evaluated bat and lyssavirus exposure among persons in an area of Nigeria that celebrates a bat festival. Bats from festival caves underwent serologic testing for phylogroup II lyssaviruses (Lagos bat virus, Shimoni bat virus, Mokola virus). The enrolled households consisted of 2,112 persons, among whom 213 (10%) were reported to have ever had bat contact (having touched a bat, having been bitten by a bat, or having been scratched by a bat) and 52 (2%) to have ever been bitten by a bat. Of 203 participants with bat contact, 3 (1%) had received rabies vaccination. No participant had neutralizing antibodies to phylogroup II lyssaviruses, but >50% of bats had neutralizing antibodies to these lyssaviruses. Even though we found no evidence of phylogroup II lyssavirus exposure among humans, persons interacting with bats in the area could benefit from practicing bat-related health precautions.


Subject(s)
Bites and Stings , Chiroptera , Lyssavirus , Rhabdoviridae Infections , Animals , Antibodies, Neutralizing , Holidays , Humans , Lyssavirus/genetics , Nigeria , Rhabdoviridae Infections/epidemiology , Rhabdoviridae Infections/veterinary
6.
Microb Pathog ; 132: 293-301, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31082531

ABSTRACT

Stone formation and catheter blockage are major complications of Proteus UTIs. In this study, we investigated the ability of allicin to inhibit P. mirabilis-induced struvite crystallization and catheter blockage using a synthetic bladder model. Struvite crystallization inhibition study was carried out using P. mirabilis lysate as urease enzyme source in synthetic urine (SU). Struvite productions were monitored by phase contrast light microscopy and measurements of pH, Mg2+ and Ca2+ precipitation and turbidity. A catheter blockage study was performed in a synthetic bladder model mimicking natural UTI in the presence of allicin at sub-MIC concentrations (MIC = 64 µg/ml). The results of crystallization study showed that allicin inhibited pH rise and consequently turbidity and precipitation of ions in a dose-dependent manner. The results of catheter blockage study showed that allicin at sub-MIC concentrations (2, 4, 8 µg/ml) significantly increased the time for catheter blockage to occur to 61, 74 and 92 h respectively compared to allicin-free control (48 h). In a similar way, the results showed that allicin delayed the increase of SU pH level in bladder model in a dose-dependent manner compared to allicin-free control. The results also showed that following the increase of allicin concentration, Mg2+ and Ca2+ deposition in catheters were much lower compared to allicin-free control, further confirmed by direct observation of the catheters' eyehole and cross sections. We conclude that allicin prevents the formation of Proteus-induced urinary crystals and the blockage of catheters by delaying pH increase and lowering Mg2+ and Ca2+ deposition in a dose-dependent manner.


Subject(s)
Proteus Infections/prevention & control , Proteus/drug effects , Sulfinic Acids/pharmacology , Urinary Bladder/microbiology , Calcium/metabolism , Crystallization , Disulfides , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Magnesium/metabolism , Microbial Sensitivity Tests , Proteus/growth & development , Proteus mirabilis/drug effects , Proteus mirabilis/growth & development , Urease , Urinary Tract Infections/microbiology , Urinary Tract Infections/prevention & control , Urine
7.
Emerg Infect Dis ; 24(12): 2317-2323, 2018 12.
Article in English | MEDLINE | ID: mdl-30457529

ABSTRACT

Twice a year in southwestern Nigeria, during a traditional bat festival, community participants enter designated caves to capture bats, which are then consumed for food or traded. We investigated the presence of Bartonella species in Egyptian fruit bats (Rousettus aegyptiacus) and bat flies (Eucampsipoda africana) from these caves and assessed whether Bartonella infections had occurred in persons from the surrounding communities. Our results indicate that these bats and flies harbor Bartonella strains, which multilocus sequence typing indicated probably represent a novel Bartonella species, proposed as Bartonella rousetti. In serum from 8 of 204 persons, we detected antibodies to B. rousetti without cross-reactivity to other Bartonella species. This work suggests that bat-associated Bartonella strains might be capable of infecting humans.


Subject(s)
Bartonella Infections/microbiology , Bartonella Infections/transmission , Bartonella/classification , Bartonella/genetics , Chiroptera/microbiology , Animals , Bartonella Infections/epidemiology , DNA, Bacterial , Diptera/microbiology , Genotype , Humans , Multilocus Sequence Typing
8.
J Vet Pharmacol Ther ; 41(5): 746-754, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29971788

ABSTRACT

Increasing reports of multidrug-resistant bacterial infections in animals has created a need for novel antimicrobial agents that do not promote cross-resistance to critically important antimicrobial classes used in human medicine. In response to the recent emergence of antimicrobial resistance in several bovine mastitis pathogens, in vitro antimicrobial susceptibility was determined for four polyether ionophores (lasalocid, monensin, narasin and salinomycin) against Staphylococcus spp. and Streptococcus spp. isolated from clinical cases. In addition, erythrocyte haemolysis and WST-1 cell proliferation assays were used to assess in vitro mammalian cell cytotoxicity and biofilm susceptibility testing was performed using the minimum biofilm eradication concentration (MBEC™) biofilm assay. Lasalocid, monensin, narasin and salinomycin exhibited bacteriostatic antimicrobial activity against all pathogens tested, including methicillin-resistant staphylococci, with MIC90 values <16 µg/ml. Narasin and monensin displayed the least toxicity against mammalian cell lines and all compounds significantly reduced viable cell numbers in a Staphylococcus aureus biofilm. Based on in vitro characterization, all four ionophores offer potentially novel treatments against bovine mastitis but in vivo studies will be essential to determine whether acceptable safety and efficacy is present following intramammary administration.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Gram-Positive Bacteria/drug effects , Ionophores/therapeutic use , Mastitis, Bovine/drug therapy , Animals , Biofilms/drug effects , Cattle , Female , Lasalocid/therapeutic use , Mastitis, Bovine/microbiology , Microbial Sensitivity Tests/veterinary , Monensin/therapeutic use , Pyrans/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcus/drug effects , Streptococcal Infections/drug therapy , Streptococcal Infections/veterinary , Streptococcus/drug effects
9.
Clin Sci (Lond) ; 131(2): 169-180, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27885052

ABSTRACT

Streptococcus pneumoniae and influenza are the world's foremost bacterial and viral respiratory pathogens. We have previously described a γ-irradiated influenza A virus (γ-FLU) vaccine that provides cross-protective immunity against heterosubtypic infections. More recently, we reported a novel non-adjuvanted γ-irradiated S pneumoniae (γ-PN) vaccine that elicits serotype-independent protection. Considering the clinical synergism of both pathogens, combination of a serotype-independent pneumococcal vaccine with a broad-spectrum influenza vaccine to protect against both infections would have a considerable clinical impact. In the present study, we co-immunized C57BL/6 mice intranasally (IN) with a mixture of γ-PN (whole inactivated cells) and γ-FLU (whole inactivated virions) and examined protective efficacy. Co-immunization enhanced γ-PN vaccine efficacy against virulent pneumococcal challenge, which was dependent on CD4+ T-cell responses. In contrast, vaccination with γ-PN alone, co-immunization enhanced pneumococcal-specific effector T-helper 17 cell (Th17) and Th1 memory cell, promoted development of CD4+ tissue-resident memory (TRM) cells and enhanced Pneumococcus-specific antibody responses. Furthermore, co-immunization elicited significant protection against lethal influenza challenge, as well as against co-infection with both influenza and S pneumoniae. This is the first report showing the synergistic effect of combining whole cell and whole virion vaccines to both S pneumoniae and influenza as a single vaccine to protect against individual and co-infection, without compromising pathogen-specific immunity.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/prevention & control , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Administration, Intranasal , Animals , Antibody Formation , Humans , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/immunology , Vaccination
10.
Bioorg Med Chem Lett ; 27(4): 733-739, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28129976

ABSTRACT

Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps.


Subject(s)
Amides/chemistry , Anti-Infective Agents/chemistry , Escherichia coli Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Amides/pharmacology , Amides/toxicity , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Binding Sites , Cell Survival/drug effects , Chloramphenicol/pharmacology , Drug Resistance, Bacterial/drug effects , Erythromycin/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/metabolism , Naphthols/chemistry , Protein Structure, Tertiary
11.
Food Microbiol ; 68: 51-60, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28800825

ABSTRACT

The bacterial species and specific spoilage organisms associated with the Southern Australian King George Whiting (KGW) and Tasmanian Atlantic Salmon (TAS), and the efficacy of a HOCl-containing water-based sanitization product (Electro-Chemically Activated Solution, by ECAS4) in extending the shelf life of KGW and TAS fillets were evaluated. Fillets were washed with an ECAS4 solution containing either 45 ppm or 150 ppm of free chlorine and bacterial species enumerated on selective and non-selective media, followed by identification of pure isolates by 16 S rRNA gene sequencing. The dominant spoilage microbiota in KGW and TAS fillets stored at 4 ± 1 °C were Pseudomonas spp. and Shewanella spp. At either concentration, ECAS4 significantly reduced total bacterial load and specific spoilage organisms on KGW and TAS fillets (approx. 1-2 log colony-forming units) during storage and significantly extended the shelf life of the fillets by 2 and 4 days, respectively. The significant increase in shelf life and quality of fillets was corroborated by raw and cooked sensory evaluation. ECAS4 sanitization could have a significant impact on the overall food industry, translating into health and economic benefits through reduction of food spoilage bacteria and potentially, foodborne pathogens without many of the disadvantages of currently approved biocides.


Subject(s)
Bacteria/drug effects , Disinfectants/pharmacology , Fish Products/microbiology , Food Contamination/prevention & control , Food Preservation/methods , Food Preservatives/pharmacology , Salmo salar/microbiology , Animals , Bacteria/growth & development , Bacteria/isolation & purification , Food Preservation/instrumentation , Food Storage
12.
Clin Sci (Lond) ; 130(9): 697-710, 2016 May.
Article in English | MEDLINE | ID: mdl-26831937

ABSTRACT

Generating a pneumococcal vaccine that is serotype independent and cost effective remains a global challenge. γ-Irradiation has been used widely to sterilize biological products. It can also be utilized as an inactivation technique to generate whole-cell bacterial and viral vaccines with minimal impact on pathogen structure and antigenic determinants. In the present study, we utilized γ-irradiation to inactivate an un-encapsulated Streptococcus pneumoniae strain Rx1 with an unmarked deletion of the autolysin gene lytA and with the pneumolysin gene ply replaced with an allele encoding a non-toxic pneumolysoid (PdT) (designated γ-PN vaccine). Intranasal vaccination of C57BL/6 mice with γ-PN was shown to elicit serotype-independent protection in lethal challenge models of pneumococcal pneumonia and sepsis. Vaccine efficacy was shown to be reliant on B-cells and interleukin (IL)-17A responses. Interestingly, immunization promoted IL-17 production by innate cells not T helper 17 (Th17) cells. These data are the first to report the development of a non-adjuvanted intranasal γ-irradiated pneumococcal vaccine that generates effective serotype-independent protection, which is mediated by both humoral and innate IL-17 responses.


Subject(s)
B-Lymphocytes/immunology , Gamma Rays , Immunity, Innate , Interleukin-17/metabolism , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/radiation effects , Vaccination , Administration, Intranasal , Animals , CD4-Positive T-Lymphocytes/immunology , Immunity, Innate/immunology , Immunologic Memory , Interferon-gamma/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/complications , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Sepsis/complications , Sepsis/immunology , Sepsis/microbiology , Sepsis/prevention & control , Serotyping , Streptococcus pneumoniae/classification , T-Lymphocytes/immunology , Treatment Outcome
13.
Mol Microbiol ; 91(4): 834-51, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24428621

ABSTRACT

Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S. pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S. pneumoniae occurs via the ATP-binding cassette transporter AdcCB, and, unusually, two zinc-binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc-specific substrate-binding protein (SBP). By contrast with other zinc-binding SBPs, AdcA has two zinc-binding domains: a canonical amino-terminal cluster A-I zinc-binding domain and a carboxy-terminal zinc-binding domain, which has homology to the zinc-chaperone ZinT from Gram-negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc-binding SBPs of S. pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Homeostasis , Streptococcus pneumoniae/metabolism , Zinc/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Streptococcus pneumoniae/genetics
14.
Thorax ; 70(7): 636-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25964315

ABSTRACT

RATIONALE: Respiratory tract infections are common in patients suffering from pulmonary fibrosis. The interplay between bacterial infection and fibrosis is characterised poorly. OBJECTIVES: To assess the effect of Gram-positive bacterial infection on fibrosis exacerbation in mice. METHODS: Fibrosis progression in response to Streptococcus pneumoniae was examined in two different mouse models of pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS: We demonstrate that wild-type mice exposed to adenoviral vector delivery of active transforming growth factor-ß1 (TGFß1) or diphteria toxin (DT) treatment of transgenic mice expressing the DT receptor (DTR) under control of the surfactant protein C (SPC) promoter (SPC-DTR) to induce pulmonary fibrosis developed progressive fibrosis following infection with Spn, without exhibiting impaired lung protective immunity against Spn. Antibiotic treatment abolished infection-induced fibrosis progression. The cytotoxin pneumolysin (Ply) of Spn caused this phenomenon in a TLR4-independent manner, as Spn lacking Ply (SpnΔply) failed to trigger progressive fibrogenesis, whereas purified recombinant Ply did. Progressive fibrogenesis was also observed in AdTGFß1-exposed Ply-challenged TLR4 KO mice. Increased apoptotic cell death of alveolar epithelial cells along with an attenuated intrapulmonary release of antifibrogenic prostaglandin E2 was found to underlie progressive fibrogenesis in Ply-challenged AdTGFß1-exposed mice. Importantly, vaccination of mice with the non-cytotoxic Ply derivative B (PdB) substantially attenuated Ply-induced progression of lung fibrosis in AdTGFß1-exposed mice. CONCLUSIONS: Our data unravel a novel mechanism by which infection with Spn through Ply release induces progression of established lung fibrosis, which can be attenuated by protein-based vaccination of mice.


Subject(s)
Pneumonia, Pneumococcal/complications , Pulmonary Fibrosis/microbiology , Streptolysins/physiology , Animals , Anti-Bacterial Agents/therapeutic use , Apoptosis/drug effects , Bacterial Proteins/pharmacology , Bacterial Proteins/physiology , Bronchoalveolar Lavage Fluid/immunology , Diphtheria Toxin , Disease Models, Animal , Disease Progression , Epithelial Cells/drug effects , Female , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pneumococcal Vaccines , Pneumonia, Pneumococcal/drug therapy , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/prevention & control , Streptolysins/deficiency , Streptolysins/pharmacology , Transforming Growth Factor beta1/metabolism
15.
BMC Genomics ; 15: 769, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25196724

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (the pneumococcus) is the world's foremost microbial pathogen, killing more people each year than HIV, TB or malaria. The capacity to penetrate deeper host tissues contributes substantially to the ability of this organism to cause disease. Here we investigated, for the first time, functional genomics modulation of 3 pneumococcal strains (serotype 2 [D39], serotype 4 [WCH43] and serotype 6A [WCH16]) during transition from the nasopharynx to lungs to blood and to brain of mice at both promoter and domain activation levels. RESULTS: We found 7 highly activated transcription factors (TFs) [argR, codY, hup, rpoD, rr02, scrR and smrC] capable of binding to a large number of up-regulated genes, potentially constituting the regulatory backbone of pneumococcal pathogenesis. Strain D39 showed a distinct profile in employing a large number of TFs during blood infection. Interestingly, the same highly activated TFs used by D39 in blood are also used by WCH16 and WCH43 during brain infection. This indicates that different pneumococcal strains might activate a similar set of TFs and regulatory elements depending on the final site of infection. Hierarchical clustering analysis showed that all the highly activated TFs, except rpoD, clustered together with a high level of similarity in all 3 strains, which might suggest redundancy in the regulatory roles of these TFs during infection. Discriminant function analysis of the TFs in various niches highlights differential regulatory backgrounds of the 3 strains, and pathogenesis data confirms codY as the most significant predictor discriminating between these strains in various niches, particularly in the blood. Moreover, the predicted TF and domain activation profiles of the 3 strains correspond with their distinct pathogenicity characteristics. CONCLUSIONS: Our findings suggest that the pneumococcus changes the short binding sites in the promoter regions of genes in a niche-specific manner to enhance its ability to disseminate from one host niche to another. This study provides a framework for an improved understanding of the dynamics of pneumococcal pathogenesis, and opens a new avenue into similar investigations in other pathogenic bacteria.


Subject(s)
Bacterial Proteins/genetics , Genomics , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Transcription Factors/genetics , Animals , Bacterial Proteins/metabolism , Binding Sites , Cluster Analysis , Female , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genetic Fitness , Mice , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Proteomics , Streptococcus pneumoniae/pathogenicity , Transcription Factors/chemistry , Transcription Factors/metabolism
16.
ACS Infect Dis ; 10(2): 337-349, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38295053

ABSTRACT

Bacterial pathogens are constantly evolving to outsmart the host immune system and antibiotics developed to eradicate them. One key strategy involves the ability of bacteria to survive and replicate within host cells, thereby causing intracellular infections. To address this unmet clinical need, researchers are adopting new approaches, such as the development of novel molecules that can penetrate host cells, thus exerting their antimicrobial activity intracellularly, or repurposing existing antibiotics using nanocarriers (i.e., nanoantibiotics) for site-specific delivery. However, inconsistency in information reported across published studies makes it challenging for scientific comparison and judgment of experiments for future direction by researchers. Together with the lack of reproducibility of experiments, these inconsistencies limit the translation of experimental results beyond pre-clinical evaluation. Minimum information guidelines have been instrumental in addressing such challenges in other fields of biomedical research. Guidelines and recommendations provided herein have been designed for researchers as essential parameters to be disclosed when publishing their methodology and results, divided into four main categories: (i) experimental design, (ii) establishing an in vitro model, (iii) assessment of efficacy of novel therapeutics, and (iv) statistical assessment. These guidelines have been designed with the intention to improve the reproducibility and rigor of future studies while enabling quantitative comparisons of published studies, ultimately facilitating translation of emerging antimicrobial technologies into clinically viable therapies that safely and effectively treat intracellular infections.


Subject(s)
Anti-Infective Agents , Research Design , Reproducibility of Results , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
17.
Infect Immun ; 81(10): 3644-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23876799

ABSTRACT

Streptococcus pneumoniae is a major human pathogen responsible for massive global morbidity and mortality. The pneumococcus attaches a variety of proteins to its cell surface, many of which contribute to virulence; one such family are the polyhistidine triad (Pht) proteins PhtA, PhtB, PhtD, and PhtE. In this study, we have examined the mechanism of Pht surface attachment using PhtD as a model. Analysis of deletion and point mutants identified a three-amino-acid region of PhtD (Q27-H28-R29) that is critical for the process. The analogous region in PhtE was also necessary for its attachment to the cell surface. Furthermore, we show that a large proportion of the total amount of each Pht protein is released into bacterial culture supernatants. Other surface proteins were also released, albeit to lesser extents, and this was not due to pneumococcal autolysis. The extent of release of surface proteins was strain dependent and was not affected by the capsule. Lastly, we compared the fitness of wild-type and ΔphtABDE pneumococci in vivo in a mouse coinfection model. Release of Pht proteins by the wild type did not complement the mutant strain, consistent with surface-attached rather than soluble forms of the Pht proteins playing the major role in virulence. The significant degree of release of Pht proteins from intact bacteria may have implications for the use of these proteins in novel vaccines.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Membrane Proteins/metabolism , Streptococcus pneumoniae/metabolism , Amino Acid Substitution , Animals , Bacterial Proteins/genetics , Fitness Centers , Gene Deletion , Membrane Proteins/genetics , Mice , Pneumococcal Infections/microbiology , Point Mutation , Protein Transport , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Virulence
18.
PLoS Pathog ; 7(11): e1002357, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22072971

ABSTRACT

Transition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria, and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumoniae extracellular Zn(II) inhibits the acquisition of the essential metal Mn(II) by competing for binding to the solute binding protein PsaA. We show that, although Mn(II) is the high-affinity substrate for PsaA, Zn(II) can still bind, albeit with a difference in affinity of nearly two orders of magnitude. Despite the difference in metal ion affinities, high-resolution structures of PsaA in complex with Mn(II) or Zn(II) showed almost no difference. However, Zn(II)-PsaA is significantly more thermally stable than Mn(II)-PsaA, suggesting that Zn(II) binding may be irreversible. In vitro growth analyses show that extracellular Zn(II) is able to inhibit Mn(II) intracellular accumulation with little effect on intracellular Zn(II). The phenotype of S. pneumoniae grown at high Zn(II):Mn(II) ratios, i.e. induced Mn(II) starvation, closely mimicked a ΔpsaA mutant, which is unable to accumulate Mn(II). S. pneumoniae infection in vivo elicits massive elevation of the Zn(II):Mn(II) ratio and, in vitro, these Zn(II):Mn(II) ratios inhibited growth due to Mn(II) starvation, resulting in heightened sensitivity to oxidative stress and polymorphonuclear leucocyte killing. These results demonstrate that microbial susceptibility to Zn(II) toxicity is mediated by extracellular cation competition and that this can be harnessed by the innate immune response.


Subject(s)
Manganese/metabolism , Pneumococcal Infections/metabolism , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Zinc/metabolism , Zinc/pharmacology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Animals , Bacterial Adhesion/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding, Competitive , Immunity, Innate , Ion Transport/drug effects , Lipoproteins/chemistry , Lipoproteins/genetics , Lipoproteins/metabolism , Manganese/chemistry , Mice , Mucous Membrane/metabolism , Neutrophils/immunology , Oxidative Stress , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Protein Binding , Streptococcus pneumoniae/physiology , Zinc/chemistry
19.
FASEB J ; 26(6): 2424-36, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22415311

ABSTRACT

Community-acquired pneumonia presents a spectrum of clinical phenotypes, from lobar pneumonia to septic shock, while mechanisms underlying progression are incompletely understood. In a transcriptomic and metabolomic study across tissues, we examined serotype-specific regulation of signaling and metabolic pathways in C57BL/6 mice intratracheally instilled with either serotype 19F Streptococcus pneumoniae (S19; causing lobar pneumonia), or serotype 2 S. pneumoniae (S2; causing septic pneumococcal disease,) or vehicle (Todd-Hewitt broth). Samples of lung, liver, and blood were collected at 6 and 24 h postinfection and subjected to microarray analysis and mass spectrometry. Results comprise a preferential induction of cholesterol biosynthesis in lobar pneumonia at low-infection doses (10(5) colony forming units/mouse) leading to increased plasma cholesterol (vehicle: 1.8±0.12 mM, S2: 2.3±0.10 mM, S19: 2.9±0.15 mM; P<0.05, comparing S19 to vehicle and S2). This induction was pneumolysin dependent, as a pneumolysin-deficient strain of serotype 19F failed to induce cholesterol biosynthesis (S19ΔPLY: 1.9±0.03 mM). Preincubation of pneumolysin with purified cholesterol or plasma from hypercholesterolemic mice prior to intratracheal instillation protected against lung barrier dysfunction and alveolar macrophage necrosis. Cholesterol may attenuate disease severity by neutralizing pneumolysin in the alveolar compartment and thus prevent septic disease progression.


Subject(s)
Cholesterol/biosynthesis , Liver/metabolism , Pneumonia, Pneumococcal/physiopathology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Cholesterol/pharmacology , Female , Macrophages, Alveolar/drug effects , Mice , Mice, Inbred C57BL , Protein Array Analysis , Streptolysins/genetics , Streptolysins/pharmacology
20.
Microbiol Spectr ; : e0445922, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37606382

ABSTRACT

Bacteremic Streptococcus pneumoniae pneumonia is one of the most severe forms of invasive pneumococcal disease (IPD) and with particularly high case-fatality rates among the elderly and individuals with comorbidities, exacerbated by rising antibiotic resistance and time to initiation of therapy. Here, we examined the efficacy of the preclinical "vancapticin" glycopeptide MCC5145 against fulminant infection by S. pneumoniae serotype 2 strain D39 in a bioluminescent, neutropenic mouse model of bacteremic pneumonia. MCC5145 is a semisynthetic vancomycin derivative chemically modified at the C-terminus with a membrane-targeting motif designed to preferentially bind the anionic bacterial surface. We show that similar to vancomycin, subcutaneous administration of MCC5145 to mice 1 day after intranasal infection with a bioluminescent derivative of S. pneumoniae D39 elicited time and concentration-dependent reduction in total flux in the lungs and blood. Together, our finding supports the further development of MCC5145 as a potential new treatment option for pneumonia and/or bacteremic pneumonia in clinical settings, particularly for immunocompromised individuals. IMPORTANCE S. pneumoniae (the pneumococcus) causes severe community acquired lung and blood infection, especially among the elderly and people with underlying medical conditions and/or weakened immune systems. The rising incidence of antibiotic resistance and delays between diagnosis of infection and commencement of effective therapy make treatment difficult and result in high mortality rates. In this work, we show that a new derivative (MCC5145) of an existing antibiotic (vancomycin) rapidly eradicated lethal pneumococcal challenge from the lungs and blood of mice with a suppressed immune system. Our findings support that MCC5145 is a promising option for the treatment of lung and blood infections caused by the pneumococcus at point-of-care settings, particularly for the elderly and individuals with a weakened immune system.

SELECTION OF CITATIONS
SEARCH DETAIL