Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30794774

ABSTRACT

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Subject(s)
Intestinal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/metabolism , Cell Line , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Deoxycholic Acid/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestinal Neoplasms/genetics , Intestines , Liver , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/physiology , Organoids/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Risk Factors , Signal Transduction , Taurocholic Acid/analogs & derivatives , Taurocholic Acid/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
2.
Nature ; 586(7830): 606-611, 2020 10.
Article in English | MEDLINE | ID: mdl-32814902

ABSTRACT

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Immune Evasion , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Organoids/cytology , Organoids/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line , Epigenesis, Genetic , Female , Glucose/metabolism , Graft Rejection , Heterografts , Homeostasis , Humans , Immune Tolerance , Insulin Secretion , Islets of Langerhans Transplantation , Lymphocyte Activation , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/transplantation , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Wnt Signaling Pathway/drug effects , Wnt4 Protein/metabolism , Wnt4 Protein/pharmacology
3.
Proc Natl Acad Sci U S A ; 120(33): e2300036120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549292

ABSTRACT

While the world is rapidly transforming into a superaging society, pharmaceutical approaches to treat sarcopenia have hitherto not been successful due to their insufficient efficacy and failure to specifically target skeletal muscle cells (skMCs). Although electrical stimulation (ES) is emerging as an alternative intervention, its efficacy toward treating sarcopenia remains unexplored. In this study, we demonstrate a silver electroceutical technology with the potential to treat sarcopenia. First, we developed a high-throughput ES screening platform that can simultaneously stimulate 15 independent conditions, while utilizing only a small number of human-derived primary aged/young skMCs (hAskMC/hYskMC). The in vitro screening showed that specific ES conditions induced hypertrophy and rejuvenation in hAskMCs, and the optimal ES frequency in hAskMCs was different from that in hYskMCs. When applied to aged mice in vivo, specific ES conditions improved the prevalence and thickness of Type IIA fibers, along with biomechanical attributes, toward a younger skMC phenotype. This study is expected to pave the way toward an electroceutical treatment for sarcopenia with minimal side effects and help realize personalized bioelectronic medicine.


Subject(s)
Sarcopenia , Animals , Humans , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal/physiology , Phenotype , Sarcopenia/therapy , Silver
4.
Proc Natl Acad Sci U S A ; 120(21): e2217826120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37192160

ABSTRACT

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients.


Subject(s)
Phosphoglycerate Dehydrogenase , Stomach Neoplasms , Humans , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Cell Line, Tumor , Glutamine/metabolism , Nutrients
5.
Circulation ; 149(3): 227-250, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37961903

ABSTRACT

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Subject(s)
Heart Failure , Mice , Animals , Cardiomegaly/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Fatty Acids/metabolism
6.
Proc Natl Acad Sci U S A ; 119(51): e2213041119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36508655

ABSTRACT

The pleiotropic actions of the Farnesoid X Receptor (FXR) are required for gut health, and reciprocally, reduced intestinal FXR signaling is seen in inflammatory bowel diseases (IBDs). Here, we show that activation of FXR selectively in the intestine is protective in inflammation-driven models of IBD. Prophylactic activation of FXR restored homeostatic levels of pro-inflammatory cytokines, most notably IL17. Importantly, these changes were attributed to FXR regulation of innate lymphoid cells (ILCs), with both the inflammation-driven increases in ILCs, and ILC3s in particular, and the induction of Il17a and Il17f in ILC3s blocked by FXR activation. Moreover, a population of ILC precursor-like cells increased with treatment, implicating FXR in the maturation/differentiation of ILC precursors. These findings identify FXR as an intrinsic regulator of intestinal ILCs and a potential therapeutic target in inflammatory intestinal diseases.


Subject(s)
Immunity, Innate , Inflammatory Bowel Diseases , Humans , Lymphocytes , Inflammatory Bowel Diseases/drug therapy , Cytokines , Inflammation
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074761

ABSTRACT

Opioid-induced respiratory depression (OIRD) causes death following an opioid overdose, yet the neurobiological mechanisms of this process are not well understood. Here, we show that neurons within the lateral parabrachial nucleus that express the µ-opioid receptor (PBL Oprm1 neurons) are involved in OIRD pathogenesis. PBL Oprm1 neuronal activity is tightly correlated with respiratory rate, and this correlation is abolished following morphine injection. Chemogenetic inactivation of PBL Oprm1 neurons mimics OIRD in mice, whereas their chemogenetic activation following morphine injection rescues respiratory rhythms to baseline levels. We identified several excitatory G protein-coupled receptors expressed by PBL Oprm1 neurons and show that agonists for these receptors restore breathing rates in mice experiencing OIRD. Thus, PBL Oprm1 neurons are critical for OIRD pathogenesis, providing a promising therapeutic target for treating OIRD in patients.


Subject(s)
Analgesics, Opioid/adverse effects , Morphine/adverse effects , Neurons/metabolism , Receptors, Opioid, mu/metabolism , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/metabolism , Analgesics, Opioid/pharmacology , Animals , Mice , Mice, Transgenic , Morphine/administration & dosage , Morphine/pharmacology , Neurons/pathology , Receptors, Opioid, mu/genetics , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology
8.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34446564

ABSTRACT

In macrophages, homeostatic and immune signals induce distinct sets of transcriptional responses, defining cellular identity and functional states. The activity of lineage-specific and signal-induced transcription factors are regulated by chromatin accessibility and other epigenetic modulators. Glucocorticoids are potent antiinflammatory drugs; however, the mechanisms by which they selectively attenuate inflammatory genes are not yet understood. Acting through the glucocorticoid receptor (GR), glucocorticoids directly repress inflammatory responses at transcriptional and epigenetic levels in macrophages. A major unanswered question relates to the sequence of events that result in the formation of repressive regions. In this study, we identify bromodomain containing 9 (BRD9), a component of SWI/SNF chromatin remodeling complex, as a modulator of glucocorticoid responses in macrophages. Inhibition, degradation, or genetic depletion of BRD9 in bone marrow-derived macrophages significantly attenuated their responses to both liposaccharides and interferon inflammatory stimuli. Notably, BRD9-regulated genes extensively overlap with those regulated by the synthetic glucocorticoid dexamethasone. Pharmacologic inhibition of BRD9 potentiated the antiinflammatory responses of dexamethasone, while the genetic deletion of BRD9 in macrophages reduced high-fat diet-induced adipose inflammation. Mechanistically, BRD9 colocalized at a subset of GR genomic binding sites, and depletion of BRD9 enhanced GR occupancy primarily at inflammatory-related genes to potentiate GR-induced repression. Collectively, these findings establish BRD9 as a genomic antagonist of GR at inflammatory-related genes in macrophages, and reveal a potential for BRD9 inhibitors to increase the therapeutic efficacies of glucocorticoids.


Subject(s)
Chromatin Assembly and Disassembly , Dexamethasone/pharmacology , Gene Expression Regulation , Macrophages/immunology , Receptors, Glucocorticoid/metabolism , Transcription Factors/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Domains , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Transcription Factors/genetics
9.
Gastroenterology ; 163(1): 239-256, 2022 07.
Article in English | MEDLINE | ID: mdl-35461826

ABSTRACT

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Subject(s)
Pancreas, Exocrine , Pancreatitis, Chronic , Acinar Cells/pathology , Animals , Estrogens/metabolism , Humans , Mice , Mice, Knockout , Pancreas/pathology , Pancreas, Exocrine/metabolism , Pancreatitis, Chronic/pathology
11.
JCI Insight ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325548

ABSTRACT

Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of Toll-Like Receptor (TLR) 4-induced low-grade inflammation in macrophages and endothelium. Transcriptome analysis in macrophages revealed that 3'SL attenuates mRNA levels of a selected set of inflammatory genes and promotes the activity of Liver X Receptor (LXR) and Sterol Regulatory Element-binding Protein-1 (SREBP). These acute anti-inflammatory effects of 3'SL were associated with reduced histone H3K27 acetylation at a subset of lipopolysaccharide (LPS)-inducible enhancers distinguished by preferential enrichment for CCCTC-binding factor (CTCF), Interferon Regulatory Factor 2 (IRF2), B-cell lymphoma 6 (BCL6), and other transcription factor recognition motifs. In a murine atherosclerosis model, both subcutaneous and oral administration of 3'SL significantly reduced atherosclerosis development and the associated inflammation. This study provides evidence that 3'SL attenuates inflammation by a transcriptional mechanism to reduce atherosclerosis development in the context of cardiovascular disease.

12.
J Sport Health Sci ; : 100991, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341495

ABSTRACT

BACKGROUND: Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. METHODS: We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS: We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION: Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.

13.
ACS Chem Biol ; 18(4): 756-771, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36988910

ABSTRACT

Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Genetic evidence indicates that the orphan nuclear receptors estrogen receptor-related receptors (ERRs) play an important role in skeletal muscle exercise capacity. Three ERR subtypes exist (ERRα, ß, and γ), and although ERRß/γ agonists have been designed, there have been significant difficulties in designing compounds with ERRα agonist activity. Additionally, there are limited synthetic agonists that can be used to target ERRs in vivo. Here, we report the identification of a synthetic ERR pan agonist, SLU-PP-332, that targets all three ERRs but has the highest potency for ERRα. Additionally, SLU-PP-332 has sufficient pharmacokinetic properties to be used as an in vivo chemical tool. SLU-PP-332 increases mitochondrial function and cellular respiration in a skeletal muscle cell line. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. We also observed that SLU-PP-332 induced an ERRα-specific acute aerobic exercise genetic program, and the ERRα activation was critical for enhancing exercise endurance in mice. These data indicate the feasibility of targeting ERRα for the development of compounds that act as exercise mimetics that may be effective in the treatment of numerous metabolic disorders and to improve muscle function in the aging.


Subject(s)
Estrogens , Exercise Tolerance , Receptors, Estrogen , Animals , Mice , Exercise Tolerance/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism , Estrogens/chemistry , Estrogens/pharmacology , ERRalpha Estrogen-Related Receptor
14.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745372

ABSTRACT

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

15.
Cell Rep ; 42(8): 112997, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37611587

ABSTRACT

Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetically controlled cohorts of mice, we identify diet as the major driver of microbial and metabolomic differences, with reductions in α diversity and widespread changes in cecal metabolites seen in high-fat diet (HFD)-fed mice. In addition, non-classic amino acid conjugation of the bile acid cholic acid (AA-CA) increased with HFD. We show that AA-CAs impact intestinal stem cell growth and demonstrate that Ileibacterium valens and Ruminococcus gnavus are able to synthesize these AA-CAs. This multi-omics dataset implicates diet-induced shifts in the microbiome and the metabolome in disease progression and has potential utility in future diagnostic and therapeutic developments.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Animals , Mice , Bile Acids and Salts , Metabolome
16.
Nat Commun ; 14(1): 7791, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057326

ABSTRACT

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreas/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Fibroblasts/metabolism , Carcinogenesis/pathology , Tumor Microenvironment
17.
Nat Commun ; 14(1): 5195, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673892

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Animals , Mice , RNA , Epigenesis, Genetic , Regulatory Sequences, Nucleic Acid , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Methyltransferases , RNA-Binding Proteins/genetics
18.
Mol Cells ; 45(10): 738-748, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35904026

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed a serious threat to global public health. A novel vaccine made from messenger RNA (mRNA) has been developed and approved for use at an unprecedented pace. However, an increased risk of myocarditis has been reported after BNT162b2 mRNA vaccination due to unknown causes. In this study, we used single-cell RNA sequencing and single-cell T cell receptor sequencing analyses of peripheral blood mononuclear cells (PBMCs) to describe, for the first time, changes in the peripheral immune landscape of a patient who underwent myocarditis after BNT162b2 vaccination. The greatest changes were observed in the transcriptomic profile of monocytes in terms of the number of differentially expressed genes. When compared to the transcriptome of PBMCs from vaccinated individuals without complications, increased expression levels of IL7R were detected in multiple cell clusters. Overall, results from this study can help advance research into the pathogenesis of BNT162b2-induced myocarditis.


Subject(s)
COVID-19 , Myocarditis , Viral Vaccines , BNT162 Vaccine , Humans , Leukocytes, Mononuclear , Myocarditis/etiology , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
19.
Sci Rep ; 12(1): 21842, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36528695

ABSTRACT

A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. Here, we developed a supervised machine learning-based classifier for fatty liver disease using fecal 16S rDNA sequencing data. Based on the Kangbuk Samsung Hospital cohort (n = 777), we generated a random forest classifier to predict fatty liver diseases in individuals with or without insulin resistance (n = 166 and n = 611, respectively). The model performance was evaluated based on metrics, including accuracy, area under receiver operating curve (AUROC), kappa, and F1-score. The developed classifier for fatty liver diseases performed better in individuals with insulin resistance (AUROC = 0.77). We further optimized the classifiers using genetic algorithm. The improved classifier for insulin resistance, consisting of ten microbial genera, presented an advanced classification (AUROC = 0.93), whereas the improved classifier for insulin-sensitive individuals failed to distinguish participants with fatty liver diseases from the healthy. The classifier for individuals with insulin resistance was comparable or superior to previous methods predicting fatty liver diseases (accuracy = 0.83, kappa = 0.50, F1-score = 0.89), such as the fatty liver index. We identified the ten genera as a core set from the human gut microbiome, which could be a diagnostic biomarker of fatty liver diseases for insulin resistant individuals. Collectively, these findings indicate that the machine learning classifier for fatty liver diseases in the presence of insulin resistance is comparable or superior to commonly used methods.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Insulins , Non-alcoholic Fatty Liver Disease , Humans , Gastrointestinal Microbiome/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Machine Learning
20.
Cell Metab ; 34(10): 1548-1560.e6, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36041455

ABSTRACT

Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.


Subject(s)
Caspase 2 , Non-alcoholic Fatty Liver Disease , Animals , Caspase 2/metabolism , Diet , Fructose/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Protein Serine-Threonine Kinases , Sterol Regulatory Element Binding Protein 1/metabolism , Sterols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL