Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
Add more filters

Publication year range
1.
Soft Matter ; 20(12): 2840-2862, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456335

ABSTRACT

The present article deals with the electrohydrodynamic motion of diffuse porous particles governed by an applied DC electric field. The spatial distribution of monomers as well as the charge distribution across the particle are considered to follow sigmoidal distribution involving decay length. Such a parameter measures the degree of inhomogeneity of the monomer distribution across the particle. The diffuse porous particles resemble several colloidal entities which are often seen in the environment as well as in biological and pharmaceutical industries. Considering the impact of bulk pH and ion steric effects, we modelled the electrohydrodynamics of such porous particulates based on the modified Boltzmann distribution for the spatial distribution of electrolyte ions and the Poisson equation for electric potential as well as the conservation of mass and momentum principles. We adopt regular perturbation analysis with weak field assumption and the perturbed equations are solved numerically to calculate the electrophoretic mobility and neutralization fraction of the particle charge during its motion as well as fluid collection efficiency. We further deduced the closed form relation between the drag force experienced by the charged porous particle and the fluid collection efficiency. In addition to the numerical results, we further derived the closed form analytical results for all the intrinsic parameters indicated above derived within the Debye-Hückel electrostatic framework and homogeneous distribution of monomers within the particle for which the decay length vanishes. The deduced mathematical results as indicated above will be useful to analyze several electrostatic and hydrodynamic features of a wide class of porous particulate and environmental entities.

2.
Langmuir ; 39(35): 12452-12466, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37615654

ABSTRACT

Owing to the importance of analytical results for electrokinetics of colloidal entities, we performed a mathematical analysis to determine the closed form analytical results for the diffusiophoretic velocity of a hydrophobic and polarizable fluid droplet. A comprehensive mathematical model is developed for diffusiophoresis, considering the background aqueous medium as general electrolytes (e.g., binary valence-symmetric/asymmetric electrolytes and a mixed solution of binary electrolytes). We performed our analysis under a weak concentration gradient, and the analytical results for diffusiophoretic velocity are calculated within the Debye-Hückel electrostatic framework. The exact form of the diffusiophoretic velocity is further approximated with negligible error, and the approximate form is found to be free from any of the cumbersome exponential integrals and thus very convenient for practical use. The present theory also covers the diffusiophoresis of perfectly dielectric as well as perfectly conducting droplets as its limiting case. In addition, we have further derived a number of closed form expressions for diffusiophoretic velocity pertaining to several particular cases, and we observed that the derived limit correctly recovers the available existing analytical results for diffusiophoretic velocity. Thus, the present analytical theory for diffusiophoresis can be applied to a wide class of fluidic droplets, e.g., hydrophobic and dielectric oil/conducting mercury droplets, air bubbles, nanoemulsions, as well as any polarizable and hydrophobic fluidic droplet suspended in a solution of general electrolytes.

3.
Langmuir ; 38(29): 8943-8953, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35830337

ABSTRACT

A theoretical study has been carried out on the electrophoresis of charged dielectric liquid droplets with an equipotential and hydrodynamically slipping surface moving in a quenched polymeric charged hydrogel medium. The liquid inside the droplet is electrically neutral. The Brinkman-Debye-Bueche model is employed to study the gel electrophoresis of such a hydrophobic and equipotential liquid droplet considering the long-range hydrodynamic interaction between a migrating droplet and the gel skeleton. Within the weak field and Debye-Hückel electrostatic framework, we derive an original closed-form expression for electrophoretic mobility, which further recovers the existing mobility expressions derived under several limiting conditions. The derived expressions for electrophoretic mobility explicitly involve exponential integrals, which are not so convenient for practical applications. Thus, the exact forms of the electrophoretic mobility under various electrohydrodynamic conditions are further approximated to make them free from exponential integrals. The approximate forms are found to be in excellent agreement with the exact results with maximum relative errors of about 1.5%.

4.
Langmuir ; 38(37): 11421-11431, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36083152

ABSTRACT

The present article deals with the theoretical study on electrophoresis of hydrophobic and dielectric spherical fluid droplets possessing uniform surface charge density. Unlike the ideally polarizable liquid droplet bearing constant surface ζ-potential, the tangential component of the Maxwell stress is nonzero for dielectric fluid droplets with uniform surface charge density. We consider the continuity of the tangential component of total stress (sum of the hydrodynamic and Maxwell stresses) and jump in dielectric displacement along the droplet-to-electrolyte interface. The typical situation is considered here for which the interfacial tension of the fluid droplet is sufficiently high so that the droplet retains its spherical shape during its motion. The present theory can be applied to nanoemulsions, hydrophobic oil droplets, gas bubbles, droplets of immiscible liquid suspended in aqueous medium, etc. Based on weak field and low charge assumptions and neglecting the Marangoni effect, the resultant electrokinetic equations are solved using linear perturbation analysis to derive the closed form expression for electrophoretic mobility applicable for the entire range of Debye-Hückel parameter. We further deduced an alternate approximate expression for electrophoretic mobility without involving exponential integrals. Besides, we have derived analytical results for mobility pertaining to various limiting cases. The results are further illustrated to show the impact of pertinent parameters on the overall electrophoretic mobility.

5.
Langmuir ; 37(38): 11316-11329, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34529445

ABSTRACT

The biomimetic core-shell nanoparticles coated with membranes of various biological cells have attracted significant research interest, because of their extensive applications in targeted drug delivery systems. The cell membrane consists of a lipid bilayer, which can be regarded as a two-dimensional oriented viscous liquid with low dielectric permittivity, compared to a bulk aqueous medium. Such a liquid layer comprised of cell membrane may bear additional mobile charges, because of the presence of free lipid molecules or charged surfactant molecules, which further results in nonzero charge along the surface of the peripheral layer. In this article, we present an analytical theory for electrophoresis of such cell membrane coated functionalized nanoparticles in the extent of electrolyte solution, considering the combined effects of finite ion size and of ion partitioning. Going beyond the Debye-Huckel approximations, we propose an analytical theory for Donnan potential and electrophoretic mobility. The derived expressions are applicable for moderate to highly charged undertaken core-shell particles when the thickness of the peripheral liquid layer greatly exceeds the electric double layer thickness. The impact of pertinent parameters on the electrophoretic response of such a particle is further discussed.


Subject(s)
Electrolytes , Electrophoresis , Membranes , Surface Properties
6.
Langmuir ; 37(2): 703-712, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33412002

ABSTRACT

This article presents a theoretical study on the electrokinetics of concentrated suspension of charge-regulated soft particles under a weak electric field and low potential assumptions. The inner core of the undertaken particle is "semisoft" in nature, which allows ion penetration while the fluid cannot flow within it, and the outer soft polymeric shell allows the flow of the ionized fluid. In addition, the inner core and the outer polyelectrolyte layer (PEL) bear pH-regulated basic and acidic functional groups, respectively. The Poisson-Boltzmann equation-based mathematical model was adopted here for electric potential. The fluid flow across the electrolyte medium and PEL is governed by the Stokes equation and the Darcy-Brinkman equation, respectively. The Kuwabara's unit cell model (J. Phys. Soc. Japan, 1959, 14, 522-527) was invoked to observe the effect of the interaction between the neighboring particles in a concentrated suspension. A first order perturbation technique was used to determine the mean electrophoretic mobility of the undertaken soft particles in a concentrated suspension. The effect of pH and concentration of bulk electrolyte, electrohydrodynamic properties of both the inner core and PEL, on the mean electrophoretic mobility has been studied extensively. In addition, the results have been presented for the neutralization factor that measures the fraction of fixed charges neutralized by the mobile counterions.

7.
Soft Matter ; 17(23): 5700-5710, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34008689

ABSTRACT

Electrophoresis of a charged dielectric hydrophobic colloid embedded in a charged hydrogel medium is addressed. A slip velocity condition at the particle surface is considered. The characteristic of the gel electrophoresis is different compared with the free-solution electrophoresis due to the presence of immobile charges of the gel medium, which induces a strong background electroosmotic flow and modifies the Debye layer of the colloid. The gel electrophoresis of the dielectric hydrophobic charged colloid is made based on first-order perturbation analysis. A closed form solution involving simple exponential integrals for the mobility is derived, which reduces to several existing mobility expressions under limiting conditions such as for the gel electrophoresis of hydrophilic particles and a hydrophobic colloid in free-solution electrophoresis. We find that the mobility reversal is achieved by varying the Debye length or gel permeability. For the present first-order perturbation analysis, unlike free-solution electrophoresis, the particle dielectric permittivity is found to influence the mobility. One of the intriguing features of the present study is the derivation of the simplified mobility expression, which can be easily computed for a given set of parameter values.

8.
Soft Matter ; 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596298

ABSTRACT

We propose a theoretical study on the electrophoresis of core-shell composite soft particles considering the effect of hydrodynamic slip length of the hydrophobic inner core. The surface of the inner core as well as the soft polymeric shell bear zwitterionic functional groups and the charged conditions depend on the nearby micro-environment. Within a low potential and weak electric field framework, the mathematical equations of the generalized electrokinetic theory for soft surfaces are solved analytically subject to appropriate boundary conditions, and a general electrophoretic mobility expression in an integral form involving the pH-dependent electrostatic potential is derived. With the help of suitable numerical schemes, electrophoretic mobility can easily be obtained. The effect of hydrophobicity of the inner core on the electrophoretic mobility of pH-regulated soft particles is illustrated for a wide range of pertinent parameters.

9.
Soft Matter ; 16(29): 6862-6874, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32638819

ABSTRACT

In this article, we have discussed extensively electrokinetic ion transport and fluid flow through a slit polymer-grafted nanochannel filled with power-law fluid. The rigid walls of the channel are coated with the ion and fluid penetrable polymer layer containing a pH-regulated zwitterionic functional group (e.g., succinoglycan). The mathematical model is based on the non-linear Poisson-Boltzmann equation for electric double layer potential and the flow field within the polymer layer is governed by a modified Darcy-Brinkman equation; the Cauchy momentum equation governs the fluid flow outside of the polymer layer along with the equation of continuity for incompressible fluid. In order to consider a wide range of pertinent parameters, we adopt a finite difference based numerical tool to solve the coupled set of governing equations. We have analyzed several interesting features of electrokinetic transport phenomena through such a polymer-grafted nanochannel for a wide range of electrostatic and hydrodynamic properties of the polymer layer, parameters describing the non-Newtonian rheology of the background fluid, and the pH and concentration of the bulk electrolyte. In addition, we have also illustrated the ionic current across the undertaken nanochannel and observed that it can be either cation selective, anion selective or non-selective, depending on the critical choice of the pertinent parameters.

10.
Electrophoresis ; 40(9): 1282-1292, 2019 05.
Article in English | MEDLINE | ID: mdl-30702159

ABSTRACT

This article deals with a semi-analytical study on the electrophoresis of charged spherical rigid colloid by considering the effects of relaxation and ion size. The particle surface is taken to be either hydrophilic or hydrophobic in nature. In order to consider the ion size effect we have invoked the Carnahan and Starling model (J. Chem. Phys. 1969, 51, 635-636). The mathematical model is based on Stokes equation for fluid flow, modified Boltzmann equation for spatial distribution of ionic species and Poisson equation for electric potential. We adopt a linear perturbation technique under a weak electric field assumption. An iterative numerical technique in employed to solve the coupled set of perturbed equations. We have validated the numerically obtained electrophoretic mobility with the corresponding analytical solution derived under low potential limit. Going beyond the widely employed Debye-Hückel linearization, we have presented the results for a wide range of surface charge density, electrolyte concentration, and slip length to Debye length ratio. We have also identified several interesting features including occurrence of local maxima and minima in the mobility for critical choice of pertinent parameters.


Subject(s)
Colloids/chemistry , Electrophoresis/methods , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Electrolytes/chemistry , Models, Theoretical , Particle Size
11.
Oral Dis ; 22(5): 399-405, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26866618

ABSTRACT

OBJECTIVES: GaAlAs lasers induce pulp mineralization by promoting reparative dentinogenesis. This study analyzed the expression of dentin matrix protein 1 (DMP1) and osteopontin in GaAlAs laser-irradiated rat molars, to examine the hypothesis that these proteins play a role in the laser-induced reparative dentinogenic process. MATERIALS AND METHODS: The mesial surfaces of the upper first molars of 8-week-old Wistar rats were irradiated with a pulsed GaAlAs laser. After 1-14 days, mRNA expression of DMP1 and osteopontin in the coronal pulp was analyzed using real-time PCR. DMP1, osteopontin, and heat shock protein 25 (HSP25) were immunolocalized at 1-21 days. RESULTS: The pulp exhibited a degenerative zone in its mesial portion on days 1-3, and progressive formation of reparative dentin lined with HSP25-immunoreactive odontoblast-like cells, from day 7 onwards. DMP1 and osteopontin mRNA expression were significantly upregulated on days 1-7 and 3-7, respectively. From day 7 onwards, DMP1 and osteopontin immunoreactivity colocalized along the boundary between the primary and reparative dentin. CONCLUSION: GaAlAs laser irradiation of rat molars induced upregulated DMP1 and osteopontin mRNA expression in the coronal pulp, followed by the formation of reparative dentin and the colocalization of DMP1 and osteopontin immunoreactivity at the site at which this tissue first appeared.


Subject(s)
Dentin, Secondary/metabolism , Dentin, Secondary/radiation effects , Extracellular Matrix Proteins/biosynthesis , Lasers, Semiconductor , Molar/radiation effects , Osteopontin/biosynthesis , Phosphoproteins/biosynthesis , Animals , Dental Pulp/cytology , Dental Pulp/physiology , Extracellular Matrix Proteins/radiation effects , HSP27 Heat-Shock Proteins/biosynthesis , Immunohistochemistry , Male , Molar/cytology , Molar/metabolism , Odontoblasts/metabolism , Odontoblasts/radiation effects , Osteopontin/radiation effects , Phosphoproteins/radiation effects , Rats , Rats, Wistar , Up-Regulation/radiation effects
12.
Int Endod J ; 48(6): 573-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25074651

ABSTRACT

AIM: To examine the temporospatial expression of dentine matrix protein 1 (DMP1; a noncollagenous protein involved in mineralized tissue formation), osteopontin (another noncollagenous protein detected during reparative dentinogenesis) and nestin (a marker of differentiating/differentiated odontoblasts), following direct pulp capping with calcium hydroxide in rat molars. METHODOLOGY: The maxillary first molars of 8-week-old Wistar rats had their pulps exposed and capped with calcium hydroxide. The pulp-capped teeth were collected from 6 h to 14 days postoperatively and processed for immunohistochemistry for DMP1, osteopontin and nestin. Cell proliferation was monitored using 5-bromo-2'-deoxyuridine (BrdU) labelling. RESULTS: The capped pulps initially exhibited superficial necrotic changes followed by the formation of new matrix and its mineralization. DMP1 immunoreactivity was observed in the matrix beneath the necrotic layer from 6 h onwards and present in the outer portion of the newly formed mineralized matrix from 7 days onwards. Osteopontin displayed a similar expression pattern, although it occupied a narrower area than DMP1 at 6 and 12 h. Nestin-immunoreactive cells appeared beneath the DMP1-immunoreactive area at 1 day, were distributed beneath the newly formed matrix at 5 days and exhibited odontoblast-like morphology by 14 days. BrdU-positive cells significantly increased at 2 and 3 days (P < 0.05) and then decreased. CONCLUSIONS: The deposition of DMP1 at exposed pulp sites preceded the appearance of nestin-immunoreactive cells, active cell proliferation and new matrix formation after pulp capping with calcium hydroxide in rat molars, suggesting that DMP1 acts as a trigger of pulp repair. The colocalization of DMP1 and osteopontin suggests that these two proteins play complementary roles.


Subject(s)
Dental Pulp Capping , Dental Pulp Necrosis/therapy , Extracellular Matrix Proteins/metabolism , Phosphoproteins/metabolism , Animals , Calcium Hydroxide , Cell Proliferation , Humans , Immunohistochemistry , Molar , Nestin/metabolism , Osteopontin/metabolism , Rats , Rats, Wistar
13.
Skin Res Technol ; 20(2): 177-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24118475

ABSTRACT

BACKGROUND/AIMS: It is often difficult to differentiate between allergic and irritant patch test reactions by visual inspection. The purpose of this study was to test an image analysis-based method that differentiates between the two reactions by quantifying the degree of erythema at the patch test site. METHODS: A total of 172 Japanese patients were patch-tested with sodium lauryl sulfate (SLS) and nickel sulfate, followed by digital photography and visual evaluation of the patch test areas by dermatologists at 48 and 72 h. The digital images were converted to erythema index (EI) images by image processing, and changes in ΔEI (the difference in the EI between the patch test site and the adjacent normal skin) values were analyzed. RESULTS: The ΔEI was significantly increased at 72 h relative to that at 48 h for positive nickel sulfate reactions (P < 0.0001), while no significant difference in the ΔEI was found for SLS reactions. CONCLUSION: Using image analysis, allergic patch test reactions may be distinguished from irritant reactions by evaluating the change in the degree of erythema at 48 and 72 h.


Subject(s)
Dermatitis, Allergic Contact/diagnosis , Dermoscopy/methods , Image Interpretation, Computer-Assisted/methods , Nickel , Patch Tests/methods , Sodium Dodecyl Sulfate , Allergens , Female , Humans , Irritants , Male , Middle Aged , Observer Variation , Reproducibility of Results , Sensitivity and Specificity
14.
J Dent Res ; 103(2): 156-166, 2024 02.
Article in English | MEDLINE | ID: mdl-38058147

ABSTRACT

Autophagy is one of the intracellular degradation pathways and maintains cellular homeostasis, regulating the stress response, cell proliferation, and signal transduction. To elucidate the role of autophagy in the maintenance of dental epithelial stem cells and the subsequent enamel formation, we analyzed autophagy-deficient mice in epithelial cells (Atg7f/f;KRT14-Cre mice), focusing on the influence of aging and stress environments. We also performed in vitro cell and organ culture experiments with an autophagy inhibitor. In young Atg7f/f;KRT14-Cre mice, morphological change was not obvious in maxillary incisors, except for the remarkable cell death in the stratum intermedium of the transitional stage. However, under stress conditions of hyperglycemia, the incisor color changed to white in diabetes Atg7f/f;KRT14-Cre mice. Regarding dental epithelial stem cells, the shape of the apical bud region of the incisor became irregular with age, and odontoma was formed in aged Atg7f/f;KRT14-Cre mice. In addition, the shape of apical bud culture cells of Atg7f/f;KRT14-Cre mice became irregular and enlarged atypically, with epigenetic changes during culture, suggesting that autophagy deficiency may induce tumorigenesis in dental epithelial cells. The epigenetic change and upregulation of p21 expression were induced by autophagy inhibition in vivo and in vitro. These findings suggest that autophagy is important for the regulation of stem cell maintenance, proliferation, and differentiation of ameloblast-lineage cells, and an autophagy disorder may induce tumorigenesis in odontogenic epithelial cells.


Subject(s)
Aging , Ameloblasts , Mice , Animals , Epithelial Cells , Autophagy , Carcinogenesis
15.
Osteoporos Int ; 24(7): 2105-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23334732

ABSTRACT

UNLABELLED: We report the results of alendronate ingestion plus exercise in preventing the declines in bone mass and strength and elevated levels of urinary calcium and bone resorption in astronauts during 5.5 months of spaceflight. INTRODUCTION: This investigation was an international collaboration between NASA and the JAXA space agencies to investigate the potential value of antiresorptive agents to mitigate the well-established bone changes associated with long-duration spaceflight. METHODS: We report the results from seven International Space Station (ISS) astronauts who spent a mean of 5.5 months on the ISS and who took an oral dose of 70 mg of alendronate weekly starting 3 weeks before flight and continuing throughout the mission. All crewmembers had available for exercise a treadmill, cycle ergometer, and a resistance exercise device. Our assessment included densitometry of multiple bone regions using X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) and assays of biomarkers of bone metabolism. RESULTS: In addition to pre- and post-flight measurements, we compared our results to 18 astronauts who flew ISS missions and who exercised using an early model resistance exercise device, called the interim resistance exercise device, and to 11 ISS astronauts who exercised using the newer advanced resistance exercise device (ARED). Our findings indicate that the ARED provided significant attenuation of bone loss compared with the older device although post-flight decreases in the femur neck and hip remained. The combination of the ARED and bisphosphonate attenuated the expected decline in essentially all indices of altered bone physiology during spaceflight including: DXA-determined losses in bone mineral density of the spine, hip, and pelvis, QCT-determined compartmental losses in trabecular and cortical bone mass in the hip, calculated measures of fall and stance computed bone strength of the hip, elevated levels of bone resorption markers, and urinary excretion of calcium. CONCLUSIONS: The combination of exercise plus an antiresoptive drug may be useful for protecting bone health during long-duration spaceflight.


Subject(s)
Alendronate/therapeutic use , Bone Density Conservation Agents/therapeutic use , Exercise Therapy/methods , Osteoporosis/prevention & control , Space Flight , Absorptiometry, Photon/methods , Adult , Alendronate/administration & dosage , Biomarkers/blood , Biomarkers/urine , Body Composition/physiology , Bone Density/drug effects , Bone Density/physiology , Bone Density Conservation Agents/administration & dosage , Bone Resorption/etiology , Bone Resorption/prevention & control , Combined Modality Therapy , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Osteoporosis/etiology , Osteoporosis/physiopathology , Weightlessness/adverse effects
16.
Nat Genet ; 24(4): 391-5, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10742104

ABSTRACT

The composite structure of the mammalian skull, which forms predominantly via intramembranous ossification, requires precise pre- and post-natal growth regulation of individual calvarial elements. Disturbances of this process frequently cause severe clinical manifestations in humans. Enhanced DNA binding by a mutant MSX2 homeodomain results in a gain of function and produces craniosynostosis in humans. Here we show that Msx2-deficient mice have defects of skull ossification and persistent calvarial foramen. This phenotype results from defective proliferation of osteoprogenitors at the osteogenic front during calvarial morphogenesis, and closely resembles that associated with human MSX2 haploinsufficiency in parietal foramina (PFM). Msx2-/- mice also have defects in endochondral bone formation. In the axial and appendicular skeleton, post-natal deficits in Pth/Pthrp receptor (Pthr) signalling and in expression of marker genes for bone differentiation indicate that Msx2 is required for both chondrogenesis and osteogenesis. Consistent with phenotypes associated with PFM, Msx2-mutant mice also display defective tooth, hair follicle and mammary gland development, and seizures, the latter accompanied by abnormal development of the cerebellum. Most Msx2-mutant phenotypes, including calvarial defects, are enhanced by genetic combination with Msx1 loss of function, indicating that Msx gene dosage can modify expression of the PFM phenotype. Our results provide a developmental basis for PFM and demonstrate that Msx2 is essential at multiple sites during organogenesis.


Subject(s)
Bone Development/genetics , Bone and Bones/abnormalities , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Ectodermal Dysplasia/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Bone and Bones/pathology , Cartilage/abnormalities , Cartilage/pathology , Cell Differentiation , Cell Division , Cerebellum/abnormalities , Cerebellum/pathology , Chondrocytes/cytology , Ectodermal Dysplasia/pathology , Hair Follicle/abnormalities , Hair Follicle/pathology , Homeodomain Proteins , Mammary Glands, Animal/abnormalities , Mammary Glands, Animal/pathology , Mice , Mice, Knockout , Mice, Mutant Strains , Phenotype , Seizures/genetics , Tooth Abnormalities/genetics , Tooth Abnormalities/pathology
17.
J Dent Res ; 102(7): 825-834, 2023 07.
Article in English | MEDLINE | ID: mdl-37246809

ABSTRACT

The enamel knot (EK), located at the center of cap stage tooth germs, is a transitory cluster of nondividing epithelial cells. The EK acts as a signaling center that provides positional information for tooth morphogenesis and regulates the growth of tooth cusps. To identify species-specific cuspal patterns, this study analyzed the cellular mechanisms in the EK that were related to bone morphogenetic protein (Bmp), which plays a crucial role in cell proliferation and apoptosis. To understand the cellular mechanisms in the EK, the differences between 2 species showing different cuspal patterning, mouse (pointy bunodont cusp) and gerbil (flat lophodont cusp), were analyzed with quantitative reverse transcriptase polymerase chain reaction and immunofluorescent staining. Based on these, we performed protein-soaked bead implantation on tooth germs of the 2 different EK regions and compared the cellular behavior in the EKs of the 2 species. Many genes related with cell cycle, cell apoptosis, and cell proliferation were involved in BMP signaling in the EK during tooth development. A comparison of the cell proliferation and apoptosis associated with Bmp revealed distinctive patterns of the cellular mechanisms. Our findings indicate that the cellular mechanisms, such as cell proliferation and apoptosis, in the EK are related to Bmp4 and play an important role in tooth morphogenesis.


Subject(s)
Tooth , Animals , Mice , Dental Enamel/metabolism , Odontogenesis/genetics , Tooth Germ , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Apoptosis , Bone Morphogenetic Protein 4/metabolism
18.
Phys Rev E ; 102(3-1): 032601, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075919

ABSTRACT

A theoretical study on the electrophoresis of a soft particle is made by taking into account the ion steric interactions and ion partitioning effects under a thin Debye layer consideration with negligible surface conduction. Objective of this study is to provide a simple expression for the mobility of a soft particle which accounts for the finite-ion-size effect and the ion partitioning arise due to the Born energy difference between two media. The Donnan potential in the soft layer is determined by considering the ion steric interactions and the ion partitioning effect. The volume exclusion due to the finite ion size is considered by the Carnahan-Starling equation and the ion partitioning is accounted through the difference in Born energy. The modified Poisson-Boltzmann equation coupled with Stokes-Darcy-Brinkman equations are considered to determine the mobility. A closed-form expression for the electrophoretic mobility is obtained, which reduces to several existing expressions for mobility under various limiting cases.

19.
J Dent Res ; 99(8): 977-986, 2020 07.
Article in English | MEDLINE | ID: mdl-32345094

ABSTRACT

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT (SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT (SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


Subject(s)
Ameloblasts , Amelogenesis , Animals , Glucose , Glucose Transport Proteins, Facilitative , Mice , Sodium , Tooth Germ
20.
Phys Rev E ; 102(4-1): 042618, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212703

ABSTRACT

In this paper we consider the electrophoresis of a functionalized nanoparticle in electrolyte solution. The undertaken particle is comprised of a rigid inner core encapsulated with a layer of dielectric liquid (e.g., oil or lipid layer), which is immiscible to the bulk aqueous medium. The peripheral liquid layer of the undertaken nanoparticle contains mobile charges due to presence of solubilized surfactants. The mobile electrolyte ions can penetrate across the peripheral layer depending on the difference in the Born energy of the both phases. Such types of nanoparticles have received substantial attention due to their widespread applications in biomedical research. The electric double layer (EDL) is governed by the linearized Poisson-Boltzmann equation under a low potential limit and the electroosmotic flow field is governed by modified Stokes equation. We adopt the flat-plate formalism to obtain the closed analytical expression for the electrophoretic mobility of the undertaken particle under a thin EDL approximation. The dependence of electrophoretic mobility on the pertinent parameters is also illustrated.

SELECTION OF CITATIONS
SEARCH DETAIL