Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Plant Physiol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438136

ABSTRACT

Leguminous plants provide carbon to symbiotic rhizobia in root nodules to fuel the energy-consuming process of nitrogen fixation. The carbon investment pattern from the acquired sources is crucial for shaping the growth regime of the host plants. The autoregulation of nodulation (AON) signaling pathway tightly regulates the number of nodules that form. AON disruption leads to excessive nodule formation and stunted shoot growth. However, the physiological role of AON in adjusting the carbon investment pattern is unknown. Here, we show that AON plays an important role in sustaining shoot water availability, which is essential for promoting carbon investment in shoot growth in Lotus japonicus. We found that AON-defective mutants exhibit substantial accumulation of non-structural carbohydrates, such as sucrose. Consistent with this metabolic signature, resilience against water-deficit stress was enhanced in the shoots of the AON-defective mutants. Furthermore, the water uptake ability was attenuated in the AON-defective mutants, likely due to the increased ratio of nodulation zone, which is covered with hydrophobic surfaces, on the roots. These results increase our physiological understanding of legume-rhizobia symbiosis by revealing a trade-off between root nodule formation and shoot water availability.

2.
Stem Cells ; 41(3): 271-286, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36472570

ABSTRACT

Human induced pluripotent stem cells (iPSCs) require high levels of methionine (Met). Met deprivation results in a rapid decrease in intracellular S-adenosyl-methionine (SAM), poising human iPSCs for differentiation and leading to the apoptosis of undifferentiated cells. Met deprivation triggers rapid metabolic changes, including SAM, followed by reversible epigenetic modifications. Here, we show that short-term Met deprivation impairs the pluripotency network through epigenetic modification in a 3D suspension culture. The trimethylation of lysine 4 on histone H3 (H3K4me3) was drastically affected compared with other histone modifications. Short-term Met deprivation specifically affects the transcription start site (TSS) region of genes, such as those involved in the transforming growth factor ß pathway and cholesterol biosynthetic process, besides key pluripotent genes such as NANOG and POU5F1. The expression levels of these genes decreased, correlating with the loss of H3K4me3 marks. Upon differentiation, Met deprivation triggers the upregulation of various lineage-specific genes, including key definitive endoderm genes, such as GATA6. Upon differentiation, loss of H3K27me3 occurs in many endodermal genes, switching from a bivalent to a monovalent (H3K4me3) state. In conclusion, Met metabolism maintains the pluripotent network with histone marks, and their loss potentiates differentiation.


Subject(s)
Induced Pluripotent Stem Cells , Methionine , Humans , Methionine/genetics , Methionine/metabolism , Induced Pluripotent Stem Cells/metabolism , Histone Code , Embryonic Stem Cells/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic , Racemethionine/metabolism , S-Adenosylmethionine/metabolism
3.
Plant Cell Physiol ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37925598

ABSTRACT

The highly phosphorylated nucleotide, guanosine tetraphosphate (ppGpp), functions as a secondary messenger in bacteria and chloroplasts. The accumulation of ppGpp alters plastidial gene expression and metabolism, which are required for proper photosynthetic regulation and robust plant growth. However, because four plastid-localized ppGpp synthases/hydrolases function redundantly, the impact of the loss of ppGpp-dependent stringent response on plant physiology remains unclear. We used the CRISPR/Cas9 technology to generate an Arabidopsis thaliana mutant lacking all four ppGpp synthases/hydrolases, and characterized its phenotype. The mutant showed over 20-fold less ppGpp levels than the wild type (WT) under normal growth conditions, and exhibited leaf chlorosis and increased expression of defense-related genes as well as salicylic acid and jasmonate levels upon transition to nitrogen-starvation conditions. These results demonstrate that proper levels of ppGpp in plastids are required for controlling not only plastid metabolism but also phytohormone signaling, which is essential for plant defense.

4.
Physiol Plant ; 175(6): e14107, 2023.
Article in English | MEDLINE | ID: mdl-38148232

ABSTRACT

Phosphorus (P) deficiency alters the root morphological and physiological traits of plants. This study investigates how soybean cultivars with varying low-P tolerance values respond to different P levels in hydroponic culture by assessing alterations in root length, acid phosphatase activity, organic acid exudation, and metabolites in root exudates. Three low-P-tolerant cultivars ('Maetsue,' 'Kurotome,' and 'Fukuyutaka') and three low-P-sensitive cultivars ('Ihhon,' 'Chizuka,' and 'Komuta') were grown under 0 (P0) and 258 µM P (P8) for 7 and 14 days after transplantation (DAT). Low-P-tolerant cultivars increased root length by 31% and 119%, which was lower than the 62% and 144% increases in sensitive cultivars under P0 compared to P8 at 7 and 14 DAT, respectively. Acid phosphatase activity in low-P-tolerant cultivars exceeded that in sensitive cultivars by 5.2-fold and 2.0-fold at 7 and 14 DAT. Root exudates from each cultivar revealed 177 metabolites, with higher organic acid exudation in low-P-tolerant than sensitive cultivars under P0. Low-P-tolerant cultivars increased concentrations of specific metabolites (oxalate, GABA, quinate, citrate, AMP, 4-pyridoxate, and CMP), distinguishing them from low-P-sensitive cultivars under P0. The top five metabolomic pathways (purine metabolism, arginine and proline metabolism, TCA cycle, glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism) were more pronounced in low-P-tolerant cultivars at 14 DAT. These findings indicate that increasing root length was not an adaptation strategy under P deficiency; instead, tolerant cultivars exhibit enhanced root physiological traits, including increased acid phosphatase activity, organic acid exudation, specific metabolite release, and accelerated metabolic pathways under P deficiency.


Subject(s)
Glycine max , Phosphorus , Phosphorus/metabolism , Plant Roots/metabolism , Exudates and Transudates/metabolism , Acid Phosphatase/metabolism
5.
J Biol Chem ; 296: 100131, 2021.
Article in English | MEDLINE | ID: mdl-33262218

ABSTRACT

TGR5, a G protein-coupled bile acid receptor, is expressed in various tissues and regulates several physiological processes. In the skeletal muscle, TGR5 activation is known to induce muscle hypertrophy; however, the effects on glucose and lipid metabolism are not well understood, despite the fact that the skeletal muscle plays a major role in energy metabolism. Here, we demonstrate that skeletal muscle-specific TGR5 transgenic (Tg) mice exhibit increased glucose utilization, without altering the expression of major genes related to glucose and lipid metabolism. Metabolite profiling analysis by capillary electrophoresis time-of-flight mass spectrometry showed that glycolytic flux was activated in the skeletal muscle of Tg mice, leading to an increase in glucose utilization. Upon long-term, high-fat diet challenge, blood glucose clearance was improved in Tg mice without an accompanying increase in insulin sensitivity in skeletal muscle and a reduction of body weight. Moreover, Tg mice showed improved age-associated glucose intolerance. These results strongly suggest that TGR5 ameliorated glucose metabolism disorder that is caused by diet-induced obesity and aging by enhancing the glucose metabolic capacity of the skeletal muscle. Our study demonstrates that TGR5 activation in the skeletal muscle is effective in improving glucose metabolism and may be beneficial in developing a novel strategy for the prevention or treatment of hyperglycemia.


Subject(s)
Blood Glucose/metabolism , Energy Metabolism , Glucose Intolerance/prevention & control , Insulin Resistance , Muscle, Skeletal/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Diet, High-Fat , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, G-Protein-Coupled/genetics
6.
Plant Mol Biol ; 109(3): 249-269, 2022 Jun.
Article in English | MEDLINE | ID: mdl-32757126

ABSTRACT

KEY MESSAGE: Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.


Subject(s)
Manihot , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Manihot/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Starch/metabolism
7.
Planta ; 255(2): 48, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35079894

ABSTRACT

MAIN CONCLUSION: The Arabidopsis ppGpp-overproducing mutant indicates a larger biomass than wild type by modulated amino-acid metabolism under nitrogen-limiting conditions. The regulatory nucleotide, guanosine 3', 5'-bis(pyrophosphate; ppGpp)-originally identified in Escherichia coli-controls gene expression and enzyme activities in the bacteria and plastids of plant cells. We recently reported that the ppGpp over-producing mutant of Arabidopsis thaliana had a larger shoot weight than wild type (WT), especially under nutrient-deficient conditions. However, the mechanisms behind the influence of ppGpp on plant growth and biomass remain elusive. To understand the impact of the ppGpp accumulation on plant growth, we characterized metabolic changes in the ppGpp-overproducing mutant upon transition from nitrogen-rich to nitrogen-limiting concentrations. We found that the fresh weight of the mutant was significantly larger than WT when the total nitrogen source (KNO3 and NH4NO3) concentration was below 0.9 mM. When the nitrogen content in the medium decreased, aromatic and branched-chain amino acids increased in WT due to accelerated protein degradation and/or attenuated protein synthesis. These amino-acid levels in the ppGpp over-accumulating mutant decreased upon nitrogen deficiency. The results suggest that the ppGpp-overaccumulation affects amino-acid and protein homeostasis and facilitates growth under nitrogen-limiting conditions.


Subject(s)
Arabidopsis , Guanosine Tetraphosphate , Arabidopsis/genetics , Biomass , Escherichia coli , Nitrogen
8.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35565990

ABSTRACT

Edible algae Neopyropia yezoensis is used as "Nori", its dried sheet product, in Japanese cuisine. Its lipid components reportedly improve hepatic steatosis in obese db/db mice. In this study, we prepared "Nori powder (NP)" and "fermented Nori powder (FNP)" to utilize the functional lipids contained in "Nori" and examined their nutraceutical effects in vivo. Male db/db mice were fed a basal AIN-76 diet, a 10% NP-supplemented diet, or a 10% FNP-supplemented diet for 4 weeks. We detected eicosapentaenoic acid (EPA) present in both NP and FNP in the serum and liver of db/db mice in a dose-dependent manner. The NP diet reduced hepatic triglyceride accumulation (by 58%) in db/db mice by modulating gene expression, which resulted in the inhibition of lipogenic enzyme activity. Additionally, NP intake significantly suppressed the expression of inflammatory genes in the liver and hepatic injury marker levels in the sera (by 26%) of db/db mice. The FNP diet also led to a marked reduction in hepatic triglyceride accumulation (by 50%) and hepatic injury (by 28%) in db/db mice, and the mechanism of these alleviative actions was similar to that of the NP diet. Although the EPA content of FNP was one-third that of NP, metabolomic analysis revealed that bioactive betaine analogs, such as stachydrine, betaine, and carnitine, were detected only in FNP. In conclusion, we suggest that (1) mechanical processing of "Nori" makes its lipid components readily absorbable by the body to exert their lipid-lowering effects, and (2) fermentation of "Nori" produces anti-inflammatory molecules and lipid-lowering molecules, which together with the lipid components, can exert hepatic steatosis-alleviating effects.


Subject(s)
Fatty Liver , Porphyra , Animals , Betaine/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Liver/drug therapy , Fatty Liver/metabolism , Liver , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Powders/metabolism , Triglycerides/metabolism
9.
Plant Mol Biol ; 107(1-2): 63-84, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34460049

ABSTRACT

KEY MESSAGE: Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Droughts , Gene Expression Regulation, Plant , Niacin/physiology , Nicotinamidase/genetics , Adaptation, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Models, Biological , NAD/metabolism , NADP/metabolism , Niacin/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/physiology , Plants, Genetically Modified , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
10.
J Exp Bot ; 72(7): 2570-2583, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33481019

ABSTRACT

Understanding the limiting factors of grain filling is essential for the further improvement of grain yields in rice (Oryza sativa). The relatively slow grain growth of the high-yielding cultivar 'Momiroman' is not improved by increasing carbon supply, and hence low sink activity (i.e. the metabolic activity of assimilate consumption/storage in sink organs) may be a limiting factor for grain filling. However, there is no metabolic evidence to corroborate this hypothesis, partly because there is no consensus on how to define and quantify sink activity. In this study, we investigated the carbon flow at a metabolite level from photosynthesis in leaves to starch synthesis in grains of three high-yielding cultivars using the stable isotope 13C. We found that a large amount of newly fixed carbon assimilates in Momiroman was stored as hexose instead of being converted to starch. In addition, the activity of ADP-glucose pyrophosphorylase and the expression of AGPS2b, which encodes a subunit of the ADP-glucose pyrophosphorylase enzyme, were both lower in Momiroman than in the other two cultivars in grains in superior positions on panicle branches. Hence, slower starch synthesis from hexose, which is partly explained by the low expression level of AGPS2b, may be the primary metabolic reason for the lower sink activity observed in Momiroman.


Subject(s)
Oryza , Starch/biosynthesis , Carbon , Hexoses , Oryza/metabolism , Plant Proteins/metabolism
11.
Arch Microbiol ; 203(9): 5599-5611, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34455446

ABSTRACT

Plants release various metabolites from roots and root exudates contribute to differences in stress tolerance among plant species. Plant and soil microbes have complex interactions that are affected by biotic and abiotic factors. The purpose of this study was to examine the differences in metabolites in root exudates of rice (Oryza sativa) cultivars and their correlation with bacterial populations in the rhizosphere. Two rice cultivars (O. sativa cv. Akamai and O. sativa cv. Koshihikari) were grown in soils fertilized with 0 g P kg-1 (- P) or 4.8 g P kg-1 (+ P). Root exudates and root-attached soil were collected at 13 and 20 days after transplanting (DAT) and their metabolites and bacterial community structure were determined. The exudation of proline, serine, threonine, valine and 4-coumarate were increased under low P conditions in both cultivars. There was a positive correlation between the concentration of pantothenate in root exudates and the representation of members of the genera Clostridium and Sporosarcina, which were negatively correlated with root dry weight. Gracilibacter, Opitutus, Pelotomaculum, Phenylobacterium and Oxobacter were positively correlated with root dry weight and presence of allantoin, 2-aminobtyrate and GlcNac. This study provides new information about the response of plants and rhizosphere soil bacteria to low P conditions.


Subject(s)
Microbiota , Oryza , Exudates and Transudates , Plant Roots , Rhizosphere , Soil
12.
Mycorrhiza ; 31(3): 403-412, 2021 May.
Article in English | MEDLINE | ID: mdl-33459866

ABSTRACT

Arbuscular mycorrhizal (AM) fungal extraradical hyphae exude their metabolites into the soil. Root exudate metabolites are affected by plant species and P status. However, the effect of P status on AM hyphal exudate metabolites has been unknown. This study aimed to examine hyphal exudate metabolite composition of two AM fungal species and their response to P deficiency through metabolite profiling. Rhizophagus clarus and R. irregularis were grown in a two-compartment in vitro culture system of Linum usitatissimum roots on solid modified Strullu-Romand medium in combination with two P levels (3 µM (P3) and 30 µM (P30)). Hyphal exudates were collected from the hyphal compartment at 118 days after inoculation (DAI). The metabolite composition of the hyphal exudates was determined by capillary electrophoresis/time-of-flight mass spectrometry, resulting in the identification of a total of 141 metabolites at 118 DAI. In the hyphal exudates of R. clarus, the concentrations of 18 metabolites, including sugars, amino acids, and organic acids, were significantly higher (p < 0.05) under P3 than under P30 conditions. In contrast, the concentrations of 10 metabolites, including sugar and amino acids, in the hyphal exudates of R. irregularis were significantly lower (p < 0.05) under P3 than under P30 conditions. These findings suggest that the extraradical hyphae of AM fungi exude diverse metabolites of which concentrations are affected by P conditions and differ between AM fungal species.


Subject(s)
Glomeromycota , Mycorrhizae , Exudates and Transudates , Fungi , Hyphae , Phosphorus , Plant Roots
13.
Biochem Biophys Res Commun ; 524(1): 83-88, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31980164

ABSTRACT

Phenylacetic acid (PAA) is one type of natural auxin and widely exists in plants. Previous biochemical studies demonstrate that PAA in plants is synthesized from phenylalanine (Phe) via phenylpyruvate (PPA), but the PAA biosynthetic genes and its regulation remain unknown. In this article, we show that the AROGENATE DEHYDRATASE (ADT) family, which catalyzes the conversion of arogenate to Phe, can modulate the levels of PAA in Arabidopsis. We found that overexpression of ADT4 or ADT5 remarkably increased the amounts of PAA. Due to an increase in PAA levels, ADT4ox and ADT5ox plants can partially restore the auxin-deficient phenotypes caused by treatments with an inhibitor of the biosynthesis of indole-3-acetic acid (IAA), a main auxin in plants. In contrast, the levels of PAA were significantly reduced in adt multiple knockout mutants. Moreover, the levels of PPA are substantially increased in ADT4 or ADT5 overexpression plants but reduced in adt multiple knockout mutants, suggesting that PPA is a key intermediate of PAA biosynthesis. These results provide an evidence that members of the ADT family of Arabidopsis can modulate PAA level via the PPA-dependent pathway.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Phenylacetates/metabolism , Amino Acids, Dicarboxylic/metabolism , Cyclohexenes/metabolism , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Indoleacetic Acids/metabolism , Mutation , Phenylalanine/metabolism , Plants, Genetically Modified , Tyrosine/analogs & derivatives , Tyrosine/metabolism
14.
Genes Cells ; 24(2): 112-125, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30474194

ABSTRACT

Type II alveolar epithelial cells (AEC2s) play a crucial role in the regeneration of type I AECs after acute lung injury. The mechanisms underlying the regeneration of AEC2s are not fully understood. To address this issue, here, we investigated a murine model of acute lung injury using mice expressing human Diphtheria Toxin Receptor (DTR) under the control of Lysozyme M promoter (LysM-DTR). DT injection induced the depletion of AEC2s, alveolar macrophages, and bone marrow (BM)-derived myeloid cells in LysM-DTR mice, and the mice died within 6 days after DT injection. Apoptotic AEC2s and bronchiolar epithelial cells appeared at 24 hr, whereas Ki67-positive proliferating cells appeared in the alveoli and bronchioles in the lung of LysM-DTR mice at 72-96 hr after DT injection. Transfer of wild-type BM cells into LysM-DTR mice accelerated the regeneration of AEC2s along with the up-regulation of several growth factors. Moreover, several metabolites were significantly decreased in the sera of LysM-DTR mice compared with WT mice after DT injection, suggesting that these metabolites might be biomarkers to predict AEC2s injury. Together, LysM-DTR mice might be useful to identify growth factors to promote lung repair and the metabolites to predict the severity of lung injury.


Subject(s)
Acute Lung Injury/prevention & control , Alveolar Epithelial Cells/cytology , Biomarkers/metabolism , Bone Marrow Transplantation , Heparin-binding EGF-like Growth Factor/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Metabolome , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Diphtheria Toxin/toxicity , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muramidase/genetics , Promoter Regions, Genetic , Wound Healing
15.
Dev Biol ; 442(1): 40-52, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30026120

ABSTRACT

Plants often display a high competence for regeneration under stress conditions. Signals produced in response to various types of stress serve as critical triggers for de novo organogenesis, but the identity of these signaling molecules underlying cellular reprogramming are largely unknown. We previously identified an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION1 (WIND1), as a key regulator involved in wound-induced cellular reprogramming in Arabidopsis. In this study, we found that activation of Arabidopsis WIND1 (AtWIND1) in hypocotyl explants of Brassica napus (B. napus) enhances callus formation and subsequent organ regeneration. Gene expression analyses revealed that AtWIND1 enhances expression of B. napus homologs of ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN (ESR1/DRN), which is a direct target of WIND1 in Arabidopsis. Further, time-course hormonal analyses showed that an altered balance of endogenous auxin/cytokinin exists in AtWIND1-activated B. napus explants. Our mass spectrometry analyses, in addition, uncovered dynamic metabolomic reprogramming in AtWIND1-activated explants, including accumulation of several compounds, e.g. proline, gamma aminobutyric acid (GABA), and putrescine, that have historically been utilized as additives to enhance plant cell reprogramming in tissue culture. Our findings thus provide new insights into how WIND1 functions to promote cell reprogramming.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Brassica napus/genetics , Transcription Factors/genetics , Transcription Factors/physiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Cytokinins/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Genes, Plant , Indoleacetic Acids/metabolism , Organogenesis, Plant/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , Proline , Putrescine , Regeneration/genetics , Transcription Factors/metabolism , gamma-Aminobutyric Acid
16.
Plant Cell Physiol ; 59(7): 1353-1362, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29660082

ABSTRACT

We analyzed the metabolites and proteins contained in pure intact vacuoles isolated from Arabidopsis suspension-cultured cells using capillary electrophoresis-mass spectrometry (CE-MS), Fourier transform-ion cyclotron resonance (FT-ICR)-MS and liquid chromatography (LC)-MS. We identified 21 amino acids and five organic acids as major primary metabolites in the vacuoles with CE-MS. Further, we identified small amounts of 27 substances including well-known vacuolar molecules, but also some unexpected substances (e.g. organic phosphate compounds). Non-target analysis of the vacuolar sample with FT-ICR-MS suggested that there are 1,106 m/z peaks that could predict the 5,090 molecular formulae, and we have annotated 34 compounds in these peaks using the KNapSAck database. By conducting proteomic analysis of vacuolar sap, we found 186 proteins in the same vacuole samples. Since the vacuole is known as a major degradative compartment, many of these were hydrolases, but we also found various oxidoreductases and transferases. The relationships between the proteins and metabolites in the vacuole are discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Vacuoles/metabolism , Amino Acids/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/analysis , Cell Culture Techniques/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Phosphoric Monoester Hydrolases/metabolism , Spectroscopy, Fourier Transform Infrared/methods
17.
Hepatology ; 65(1): 237-252, 2017 01.
Article in English | MEDLINE | ID: mdl-27770461

ABSTRACT

Tissue-resident macrophages and bone marrow (BM)-derived monocytes play a crucial role in the maintenance of tissue homeostasis; however, their contribution to recovery from acute tissue injury is not fully understood. To address this issue, we generated an acute murine liver injury model using hepatocyte-specific Cflar-deficient (CflarHep-low ) mice. Cellular FLICE-inhibitory protein expression was down-regulated in Cflar-deficient hepatocytes, which thereby increased susceptibility of hepatocytes to death receptor-induced apoptosis. CflarHep-low mice developed acute hepatitis and recovered with clearance of apoptotic hepatocytes at 24 hours after injection of low doses of tumor necrosis factor α (TNFα), which could not induce hepatitis in wild-type (WT) mice. Depletion of Kupffer cells (KCs) by clodronate liposomes did not impair clearance of dying hepatocytes or exacerbate hepatitis in CflarHep-low mice. To elucidate the roles of BM-derived monocytes and neutrophils in clearance of apoptotic hepatocytes, we examined the effect of depletion of these cells on TNFα-induced hepatitis in CflarHep-low mice. We reconstituted CflarHep-low mice with BM cells from transgenic mice in which human diphtheria toxin receptor (DTR) was expressed under control of the lysozyme M (LysM) promoter. TNFα-induced infiltration of myeloid cells, including monocytes and neutrophils, was completely ablated in LysM-DTR BM-reconstituted CflarHep-low mice pretreated with diphtheria toxin, whereas KCs remained present in the livers. Under these experimental conditions, LysM-DTR BM-reconstituted CflarHep-low mice rapidly developed severe hepatitis and succumbed within several hours of TNFα injection. We found that serum interleukin-6 (IL-6), TNFα, and histone H3 were aberrantly increased in LysM-DTR BM-reconstituted, but not in WT BM-reconstituted, CflarHep-low mice following TNFα injection. CONCLUSION: These findings indicate an unexpected role of myeloid cells in decreasing serum IL-6, TNFα, and histone H3 levels via the suppression of TNFα-induced hepatocyte apoptosis. (Hepatology 2017;65:237-252).


Subject(s)
Hepatitis/blood , Hepatitis/etiology , Histones/blood , Myeloid Cells/physiology , Animals , Apoptosis , Disease Progression , Hepatocytes , Kupffer Cells , Mice , Mice, Transgenic , Tumor Necrosis Factor-alpha/physiology
18.
Photosynth Res ; 135(1-3): 299-308, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28536785

ABSTRACT

The regulatory nucleotides, guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp), were originally identified in Escherichia coli, and control a large set of gene expression and enzyme activities. The (p)ppGpp-dependent control of cell activities is referred to as the stringent response. A growing number of (p)ppGpp synthase/hydrolase homologs have been identified in plants, which are localized in plastids in Arabidopsis thaliana. We recently reported that the Arabidopsis mutant overproducing ppGpp in plastids showed dwarf chloroplasts, and transcript levels in the mutant plastids were significantly suppressed. Furthermore, the mutant showed more robust growth than the wild type (WT), especially under nutrient-deficient conditions, although the mechanisms are unclear. To better understand the impact of the ppGpp accumulation on plant responses to nutrient deficiency, photosynthetic activities and metabolic changes in the ppGpp-overproducing mutant were characterized here. Upon transition to the nitrogen-deficient conditions, the mutant showed reduction of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) contents, and effective and maximum quantum yield of photosystem II compared with WT. The mutant also showed more obvious changes in key metabolite levels including some amino acid contents than WT; similar metabolic change is known to be critical for plants to maintain carbon-nitrogen balance in their cells. These results suggest that artificially overproducing ppGpp modulates the organelle functions that play an important role in controlling photosynthetic performance and metabolite balance during nitrogen starvation.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/metabolism , Guanosine Pentaphosphate/metabolism , Metabolome , Nitrogen/deficiency , Photosynthesis , Carbon/metabolism , Chlorophyll/metabolism , Mutation/genetics , Phenotype , Solubility , Sugars/metabolism
19.
Physiol Plant ; 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29412473

ABSTRACT

Recycling of phosphorus (P) from P-containing metabolites is an adaptive strategy of plants to overcome soil P deficiency. This study was aimed at demonstrating differences in lipid remodelling between low-P-tolerant and -sensitive rice cultivars using lipidome profiling. The rice cultivars Akamai (low-P-tolerant) and Koshihikari (low-P-sensitive) were grown in a culture solution with [2 mg l-1 (+P)] or without (-P) phosphate for 21 and 28 days after transplantation. Upper and lower leaves were collected. Lipids were extracted from the leaves and their composition was analysed by liquid chromatography/mass spectrometry (LC-MS). Phospholipids, namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC), diacylglycerol (DAG), triacylglycerol (TAG) and glycolipids, namely sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and 1,2-diacyl-3-O-alpha-glucuronosyl glycerol (GlcADG), were detected. GlcADG level was higher in both cultivars grown in -P than in +P and the increase was larger in Akamai than in Koshihikari. DGDG, MGDG and SQDG levels were higher in Akamai grown in -P than in +P and the increase was larger in the upper leaves than in the lower leaves. PC, PE, PG and PI levels were lower in both cultivars grown in -P than in +P and the decrease was larger in the lower leaves than in the upper leaves and in Akamai than in Koshihikari. Akamai catabolised more phospholipids in older leaves and synthesised glycolipids in younger leaves. These results suggested that extensive phospholipid replacement with non-phosphorus glycolipids is a mechanism underlying low-P-tolerance in rice cultivars.

20.
Plant Physiol ; 171(4): 2432-44, 2016 08.
Article in English | MEDLINE | ID: mdl-27303024

ABSTRACT

Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase.


Subject(s)
Alkaloids/metabolism , Carboxy-Lyases/metabolism , Evolution, Molecular , Huperzia/enzymology , Lycopodium/enzymology , Ornithine Decarboxylase/metabolism , Alkaloids/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Biosynthetic Pathways , Carboxy-Lyases/genetics , Decarboxylation , Huperzia/chemistry , Huperzia/genetics , Lycopodium/chemistry , Lycopodium/genetics , Lysine/metabolism , Mutagenesis, Site-Directed , Onions/genetics , Onions/metabolism , Ornithine Decarboxylase/genetics , Phylogeny , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/enzymology , Plant Roots/genetics , Plants, Genetically Modified , Recombinant Proteins , Nicotiana/genetics , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL