Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Sci Food Agric ; 100(12): 4504-4511, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32400016

ABSTRACT

BACKGROUND: Gongronema latifolium (G. latifolium) Benth. leaves are traditionally used to treat diabetes mellitus (DM) and other diseases in Nigeria and West Africa. This study was performed to evaluate the neuroprotective effect of aqueous extract of G. latifolium leaf against DM. Antidiabetic activity of G. latifolium extracts (6.36, 12.72 and 25.44 mg kg-1 , i.p.) was determined in alloxan-induced diabetic rats. Fasting blood glucose level and oxidative stress markers catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), and nitric oxide (NO) levels were measured. Cognitive biomarkers acetylcholinesterase (AChE), butyrylcholinesterase (BChE), dopamine (DOPA), serotonin, epinephrine and norepinephrine and cyclooxygenase (COX-2) were measured in the brain of controls and of G. latifolium-treated diabetic rats. RESULTS: Administration of G. latifolium leaf extract to diabetic rats significantly restored the alterations in the levels of fasting blood glucose (FBG). The MDA and NO levels were significantly reduced with an improvement in CAT, SOD, and GPx activity in the kidneys and brains of diabetic rats treated with G. latifolium. Gongronema latifolium also significantly decreased the levels of AChE, BChE, DOPA, serotonin, epinephrine, and nor-epinephrine in diabetic rats. G. latifolium effectively ameliorated COX-2 in diabetic rats. CONCLUSION: This study showed that leaf extract of G. latifolium improved antioxidant defense against oxidative stress. It displays a neuroprotective effect resulting in the modulation of brain neurotransmitters, which could be considered as a promising treatment therapy. © 2020 Society of Chemical Industry.


Subject(s)
Apocynaceae/chemistry , Diabetic Neuropathies/drug therapy , Hypoglycemic Agents/administration & dosage , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Animals , Blood Glucose/metabolism , Catalase/metabolism , Cognition/drug effects , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/psychology , Glutathione Peroxidase/metabolism , Humans , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Nigeria , Phytotherapy , Plant Leaves/chemistry , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
2.
Pak J Pharm Sci ; 33(2): 523-529, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32276893

ABSTRACT

In this study, the effect of free and bound polyphenolic-rich extract of Syzygium cumini (Linn) Skeels leaf on antioxidant as well as α-amylase and α-glucosidase activities were determined using in vitro model. Polyphenolic-rich extract of Syzygium cumini (Linn) Skeels leaf was prepared accordingly and the capability of the extract to inhibit antioxidants as typified by ferric reducing power (FRAP) and 1,1-diphenyl-2-picryl-hydrazil (DPPH) among other free radicals scavenging abilities were quantified spectrophotometrically, added to this, the activities of (α-amylase and α-glucosidase were also assessed. The bound phenolic extract exhibited more in vitro antioxidant properties as represented by their high radicals scavenging ability in all the free radicals evaluated. Also, the polyphenolic-rich extracts inhibited α-amylase and α-glucosidase, with bound phenolics showing significant (p<0.05) increase in a dose-dependent manner than free phenolics. Therefore, this study suggests the use of Syzygium cumini leaf as a nutraceutical in the management/ control of type II diabetes mellitus patients.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Type 2/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Syzygium , Animals , Antioxidants/isolation & purification , Dose-Response Relationship, Drug , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Plant Extracts/isolation & purification , Plant Leaves , Polyphenols/isolation & purification , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/metabolism , Swine , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
3.
Biomed Microdevices ; 21(2): 44, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30963305

ABSTRACT

In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.


Subject(s)
Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Animals , Cell Adhesion , Dimethylpolysiloxanes/chemistry , Embryonic Stem Cells/cytology , Fibronectins/chemistry , Mice , Molecular Imaging , Nylons/chemistry , Propylamines/chemistry , Silanes/chemistry
4.
Toxicol Mech Methods ; 29(4): 255-262, 2019 May.
Article in English | MEDLINE | ID: mdl-30558515

ABSTRACT

Exposure to toxic elements is greatly unavoidable in our daily activities due to several routes of coming in contact with these elements. Thus lead (Pb), is one of the major causes of health hazard in human. In this study, evaluation of Zingiber officinale as mitigating measure against Pb induced biochemical and cytogenic toxicity in albino rats was investigated. Experimental rats were grouped into five with five animals per group, group I serves as control and groups 2-5 were induced intraperitoneal with lead acetate dissolved in distilled water at 3 mg/kg body weight whereas group 3-5 were orally administered with 200 mg/kg vitamin C, 200 mg/kg, and 100 mg/kg of Z. officinale, respectively for 7 d. The obtained results show that aspartate aminotransferase (AST), alkaline phosphatase (ALP), lipid peroxidation, urea, creatinine, bilirubin, and gamma-glutamyl transferase (GGT) were significantly increased (p < 0.05) and catalase (CAT) were reduced progressively in Pb alone induced rats. Hematological parameters showed a progressive reduction (p < 0.05) in lead acetate alone rats. There were significant changes in micronuclei (MN), chromosomal aberrations (CA) frequency, and oxidative damages in the bone marrow cells from lead acetate alone induced rats, although, mitotic index scores in these cells were reduced gradually (p < 0.05). The altered parameters were significantly reversed toward the levels observed in normal control rats administered with vitamin C and aqueous extract of Z. officinale. Hence, these results suggest that Z. officinale roots might contain therapeutic potential that can ameliorate the hazard effect of lead acetate poison.


Subject(s)
Ascorbic Acid/therapeutic use , Lead Poisoning/prevention & control , Lipid Metabolism/drug effects , Micronuclei, Chromosome-Defective/chemically induced , Plant Extracts/therapeutic use , Zingiber officinale/chemistry , Animals , Ascorbic Acid/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Lead Poisoning/genetics , Lead Poisoning/metabolism , Lead Poisoning/pathology , Male , Organometallic Compounds , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Rats, Wistar
5.
Cell Rep Med ; 2(4): 100227, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33948568

ABSTRACT

Utilizing T cells expressing chimeric antigen receptors (CARs) to identify and attack solid tumors has proven challenging, in large part because of the lack of tumor-specific targets to direct CAR binding. Tumor selectivity is crucial because on-target, off-tumor activation of CAR T cells can result in potentially lethal toxicities. This study presents a stringent hypoxia-sensing CAR T cell system that achieves selective expression of a pan-ErbB-targeted CAR within a solid tumor, a microenvironment characterized by inadequate oxygen supply. Using murine xenograft models, we demonstrate that, despite widespread expression of ErbB receptors in healthy organs, the approach provides anti-tumor efficacy without off-tumor toxicity. This dynamic on/off oxygen-sensing safety switch has the potential to facilitate unlimited expansion of the CAR T cell target repertoire for treating solid malignancies.


Subject(s)
Hypoxia/metabolism , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor/metabolism , Disease Models, Animal , Genes, erbB/genetics , Humans , Hypoxia/genetics , Immunotherapy, Adoptive/methods , Mice, Transgenic , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods
6.
J Evid Based Integr Med ; 25: 2515690X20916123, 2020.
Article in English | MEDLINE | ID: mdl-32423242

ABSTRACT

Artocarpus heterophyllus Lam (Moraceae) stem bark has been used locally in managing diabetes mellitus with sparse scientific information. This study investigates the in vitro antioxidant potential of polyphenolic-rich extract of A heterophyllus stem bark as well as its antidiabetic activity in streptozotocin-induced diabetic rats. Fifty male Wistar rats were used with the induction of diabetes by a single intraperitoneal injection of streptozotocin (45 mg/kg body weight) and were orally administered 400 mg/kg free and bound phenols of A heterophyllus stem bark. The animals were sacrificed on the 28th day of the experiment using the cervical dislocation method; antihyperglycemia and anti-inflammatory parameters were subsequently assessed. The polyphenolic extracts demonstrated antioxidant potentials (such as hydrogen peroxide and diphenyl-1-picrylhydrazyl), as well as strong inhibitory activity against amylase and glucosidase. There was a significant (P < .05) increase in glycogen, insulin concentration, pancreatic ß-cell scores (HOMA-ß), antioxidant enzymes and hexokinase activities, as well as glucose transporter concentration in diabetic animals administered the extracts and metformin. Also, a significant (P < .05) reduction in fasting blood glucose, lipid peroxidation, glucose-6-phosphatase, and all anti-inflammatory parameters were observed in diabetic rats administered the extracts and metformin. The extracts demonstrated antidiabetic potential, which may be useful in the management of diabetes mellitus.


Subject(s)
Antioxidants/pharmacology , Artocarpus , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Disease Models, Animal , Male , Nigeria , Plant Bark , Rats , Rats, Wistar , Streptozocin
7.
J Int Med Res ; 48(6): 300060520922649, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32602393

ABSTRACT

OBJECTIVE: This study was designed to evaluate the protective effect of aqueous extract of Solanum macrocarpon Linn leaf in the brain of an alloxan-induced rat model of diabetes. METHODS: The experimental model of diabetes was induced by a single intraperitoneal injection of freshly prepared alloxan. Rats were then divided into six groups: normal control, diabetes control, diabetes group treated with metformin, and three diabetes groups treated with different concentrations of S. macrocarpon. Rats were sacrificed on day 14 of the experiment and different brain biochemical parameters were assessed and compared between groups. RESULTS: Administration of different doses of S. macrocarpon leaf aqueous extract was associated with significantly reduced levels of fasting blood glucose, lipid peroxidation, neurotransmitters, cholinesterases, cyclooxygenase-2 and nitric oxide compared with diabetes control rats. In addition, antioxidant enzyme activities were significantly increased in diabetes rats administered 12.45, 24.9 and 49.8 mg/kg body weight of S. macrocarpon versus diabetes control rats. CONCLUSION: Aqueous extract of S. macrocarpon Linn leaf may be useful in the management of diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Experimental , Solanum , Alloxan , Animals , Blood Glucose , Brain , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents , Plant Extracts/pharmacology , Plant Leaves , Rats
8.
J Integr Med ; 17(2): 125-131, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30660591

ABSTRACT

OBJECTIVE: This study investigated the ameliorative potential of Zingiber officinale Roscoe extract against lead-induced brain damage in rats. METHODS: Thirty male rats were divided into 5 groups of 6 rats each. Lead-acetate toxicity was induced by intraperitoneal injection (10 mg/kg body weight (b.w.)) in Groups B-E. Group A (control) and Group B (lead-acetate) were left untreated; vitamin C (200 mg/kg b.w.) was administered to Group C; ethyl acetate fraction from Z. officinale extract (200 and 100 mg/kg b.w.) was administered to Group D and E by oral gavage once daily for 7 days. Changes in the content of some key marker enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO), epinephrine, dopamine, Na+/K+-ATPase, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as malonaldehyde (MDA) levels were determined in serum. RESULTS: Exposure to lead acetate resulted in a significant decrease (P < 0.05) in the activities of BChE, AChE, Na+/K+-ATPase, SOD, CAT and GPx with a corresponding increase in the levels of MDA, xanthine oxidase, epinephrine, dopamine and MAO relative to the control group. Levels of all disrupted parameters were alleviated by co-administration of Z. officinale fraction and by the standard drug, vitamin C. CONCLUSION: These results suggest that ethyl acetate fraction of Z. officinale extract attenuates lead-induced brain damage and might have therapeutic potential as a supplement that can be applied in lead poisoning.


Subject(s)
Brain Diseases/drug therapy , Lead/toxicity , Neurotransmitter Agents/administration & dosage , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Zingiber officinale/chemistry , Animals , Brain/drug effects , Brain/metabolism , Brain Diseases/etiology , Brain Diseases/metabolism , Catalase/metabolism , Dopamine/metabolism , Epinephrine/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Humans , Male , Malondialdehyde/metabolism , Neurotransmitter Agents/isolation & purification , Plant Extracts/isolation & purification , Plant Roots/chemistry , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
9.
Article in English | MEDLINE | ID: mdl-31874099

ABSTRACT

Background This study evaluates the antioxidant activity and enzyme inhibitory properties of the n-butanol fraction of Senna podocarpa leaves on α-amylase, α-glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, arginase, phosphodiesterase 5 (PDE-5), and angiotensin converting enzyme (ACE). Methods The total phenol and flavonoids, iron (Fe) chelation, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging were used to determine the antioxidant activity, and the inhibitory activities of α-glucosidase, α-amylase, AChE, BChE, tyrosinase, arginase, PDE-5 and ACE were also assessed. Results The n-butanol fraction of S. podocarpa shows high total phenol and total flavonoid contents. The n-butanol fraction of S. podocarpa leaves also chelates Fe2+ and ABTS radicals. The n-butanol fraction of S. podocarpa leaves also inhibited α-glucosidase, α-amylase, AChE, BChE, tyrosinase, arginase, PDE-5, and ACE at the concentration tested. Chromatographic analysis displayed the presence of ß-elemene, phytol and caryophyllene oxide chrysophanol, 3-oxo-methyl ester, α-humulene, ß-caryophyllene, rhein, emodin, and α-copaene. Conclusions Hence, the n-butanol fraction of S. podocarpa leaves demonstrates encouraging feat in controlling and/or managing cognitive dysfunction such as Alzheimer's disease and also hypertension, diabetes, erectile dysfunction, endothelial dysfunction, and hyperpigmentation.


Subject(s)
1-Butanol/chemistry , Antioxidants/chemistry , Enzyme Inhibitors/chemistry , Fabaceae/chemistry , Plant Leaves/chemistry , Animals , Flavonoids/chemistry , Male , Phenols/chemistry , Plant Extracts/chemistry , Rats , Rats, Wistar , Sennosides/chemistry
10.
J Food Biochem ; 43(3): e12772, 2019 03.
Article in English | MEDLINE | ID: mdl-31353540

ABSTRACT

Due to the exceptional wide range in biochemical activities of natural plant products, Spondias mombim L. are attaining a new height because they present great prospects for drug advancement. This research was designed to analyze the pharmaceutical properties of S. mombim L. ethyl acetate fraction (SMEAF) on key enzymes relevant to erectile and cognitive dysfunction. SMEAF inhibitory activities of the specified enzymes were determined spectrophotometrically. Chemical profile of SMEAF were assessed by HPLC/MS analysis. Thereafter, molecular docking of the studied enzymes with chlorogenic acid, lutein, and zeaxanthin were carried out using PATCHDOCK. SMEAF had remarkable enzyme inhibitory effects against phosphodiesterase-5 (PDE-5), arginase, angiotensin I-converting enzyme (ACE), cholinesterase, monoamine oxidase A (MAO), ecto-5' nucleotidase (E-NTDase), tyrosinase, and stimulated sodium-potassium ATPase (Na+/K+-ATPase) activities. HPLC/MS analysis revealed that phenolics and carotenoids were major components in these fraction notably, chlorogenic acid, lutein, and zeaxanthin. Our results suggested that SMEAF could be explored as phytopharmaceuticals. PRACTICAL APPLICATIONS: Spondias mombim L. are cooked as green vegetable with enormous medicinal value probably due to its polyphenols with potent antioxidant activity. Furthermore, the leaves could also be useful for therapeutic purposes against erectile dysfunction and central nervous system disorders.


Subject(s)
Alzheimer Disease/enzymology , Anacardiaceae/chemistry , Erectile Dysfunction/enzymology , Plant Extracts/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Animals , Arginase/antagonists & inhibitors , Arginase/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterases/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Enzyme Inhibitors/chemistry , Humans , Male , Molecular Docking Simulation , Monoamine Oxidase/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry , Peptidyl-Dipeptidase A/chemistry , Phosphodiesterase 5 Inhibitors/chemistry , Plant Leaves/chemistry , Rats , Rats, Wistar
11.
Toxicol Rep ; 5: 585-592, 2018.
Article in English | MEDLINE | ID: mdl-29854628

ABSTRACT

Tithonia diversifolia (Hemsl.) A. Gray leaves have long been used to manage neurodegenerative diseases without scientific basis. This study characterized the phenolic constituents, evaluated the antioxidant properties of phenolic extracts from T. diversifolia leaves used as traditional medicine in Africa and its inhibition of key enzymes linked to Alzheimer's disease. The extract was rich in phenolic acids (gallic acid, chlorogenic acid, caffeic acid and p-coumaric acid) and flavonoids (apigenin) and had 1,1-diphenyl-2-picryl-hydrazil radical scavenging abilities (IC50 = 41.05 µg. mL-1), 2,2-Azino-bis3-ethylbenthiazoline-6sulphonic acid radical scavenging ability (IC50 = 33.51 µg. mL-1), iron chelation (IC50 = 38.50 µg. mL-1), reducing power (Fe3+- Fe2+) (7.34 AAEmg/100 g), inhibited acetylcholinesterase (IC50 = 39.27 µg mL-1) and butyrylcholinesterase (IC50 = 35.01 µg mL-1) activities. These results reveal the leaf as a rich source of phenolic compounds with antioxidant and cholinesterase inhibitory activity.

12.
J Basic Clin Physiol Pharmacol ; 29(2): 217-224, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29381472

ABSTRACT

BACKGROUND: Irvingia gabonensis stem bark is a medicinal plant used in most parts of Africa to manage a number of ailments including neurodegenerative diseases that occur without scientific basis. This work characterized the phenolic composition, evaluated the cholinergic enzymes (acetylcholinesterase, AChE and butyrylcholinesterase, BChE) inhibition, and assessed the antioxidant activity of phenolic extracts from I. gabonensis (Aubry-Lecomte ex O'Rorke) Baill bark. METHODS: Total phenol and flavonoids content was evaluated in addition to antioxidant activity as shown by Fe2+ chelation, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, and 2,2-azino-bis-(3-ethylbenthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability. Inhibitory activities on AChE and BChE were evaluated. RESULTS: The extract was found to be rich in phenolic acid (ellagic acid) and flavonoids (quercetrin, kaempferol, and apigenin). The phenolic extracts displayed DPPH radical scavenging ability (IC50=19.98 µg/mL), ABTS radical scavenging ability (IC50=18.25 µg/mL), iron chelation (IC50=113.10 µg/mL), and reducing power (Fe3+ to Fe2+) (5.94 mg ascorbic acid equivalent/100 g). Extracts of I. gabonensis inhibited AChE (IC50=32.90 µg/mL) and BChE (IC50=41.50 µg/mL) activities in concentration-dependent manner. CONCLUSIONS: Hence, possible mechanism through which the stem bark executes their anti-Alzheimer's disease activity might be by inhibiting cholinesterase activities in addition to suppressing oxidative-stress-induced neurodegeneration.


Subject(s)
Acetylcholinesterase/chemistry , Antioxidants/chemistry , Butyrylcholinesterase/chemistry , Cellulose/chemistry , Cholinesterase Inhibitors/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Apigenin/chemistry , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Flavonoids/chemistry , Free Radical Scavengers/chemistry , Kaempferols/chemistry , Phenols/chemistry , Picrates/chemistry , Plants, Medicinal/chemistry , Quercetin/analogs & derivatives , Quercetin/chemistry , Sulfonic Acids/chemistry
13.
Nat Commun ; 9(1): 2951, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30054470

ABSTRACT

Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.


Subject(s)
Breast Neoplasms/metabolism , Macrophages/metabolism , Neoplasm Metastasis , Wound Healing/physiology , Animals , Cell Line, Tumor , Cell Survival , Collagen/metabolism , Cytokines/metabolism , Endopeptidases , Female , Gelatinases/metabolism , Gene Expression Regulation, Neoplastic , Heme Oxygenase-1/metabolism , Humans , Interleukin-6/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Phenotype , Prognosis , Serine Endopeptidases/metabolism , Skin/metabolism , Tumor Microenvironment/physiology
14.
Clin Cancer Res ; 24(7): 1617-1628, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29339440

ABSTRACT

Purpose: Unprecedented clinical outcomes have been achieved in a variety of cancers by targeting immune checkpoint molecules. This preclinical study investigates heme oxygenase-1 (HO-1), an immunosuppressive enzyme that is expressed in a wide variety of cancers, as a potential immune checkpoint target in the context of a chemotherapy-elicited antitumor immune response. We evaluate repurposing tin mesoporphyrin (SnMP), which has demonstrated safety and efficacy targeting hepatic HO in the clinic for the treatment of hyperbilirubinemia, as an immune checkpoint blockade therapy for the treatment of cancer.Experimental Design: SnMP and genetic inactivation of myeloid HO-1 were evaluated alongside 5-fluorouracil in an aggressive spontaneous murine model of breast cancer (MMTV-PyMT). Single-cell RNA sequencing analysis, tumor microarray, and clinical survival data from breast cancer patients were used to support the clinical relevance of our observations.Results: We demonstrate that SnMP inhibits immune suppression of chemotherapy-elicited CD8+ T cells by targeting myeloid HO-1 activity in the tumor microenvironment. Microarray and survival data from breast cancer patients reveal that HO-1 is a poor prognostic factor in patients receiving chemotherapy. Single-cell RNA-sequencing analysis suggests that the myeloid lineage is a significant source of HO-1 expression, and is co-expressed with the immune checkpoints PD-L1/2 in human breast tumors. In vivo, we therapeutically compare the efficacy of targeting these two pathways alongside immune-stimulating chemotherapy, and demonstrate that the efficacy of SnMP compares favorably with PD-1 blockade in preclinical models.Conclusions: SnMP could represent a novel immune checkpoint therapy, which may improve the immunological response to chemotherapy. Clin Cancer Res; 24(7); 1617-28. ©2018 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Metalloporphyrins/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Fluorouracil/pharmacology , Heme Oxygenase-1/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL