ABSTRACT
High-throughput proteomics platforms measuring thousands of proteins in plasma combined with genomic and phenotypic information have the power to bridge the gap between the genome and diseases. Here we performed association studies of Olink Explore 3072 data generated by the UK Biobank Pharma Proteomics Project1 on plasma samples from more than 50,000 UK Biobank participants with phenotypic and genotypic data, stratifying on British or Irish, African and South Asian ancestries. We compared the results with those of a SomaScan v4 study on plasma from 36,000 Icelandic people2, for 1,514 of whom Olink data were also available. We found modest correlation between the two platforms. Although cis protein quantitative trait loci were detected for a similar absolute number of assays on the two platforms (2,101 on Olink versus 2,120 on SomaScan), the proportion of assays with such supporting evidence for assay performance was higher on the Olink platform (72% versus 43%). A considerable number of proteins had genomic associations that differed between the platforms. We provide examples where differences between platforms may influence conclusions drawn from the integration of protein levels with the study of diseases. We demonstrate how leveraging the diverse ancestries of participants in the UK Biobank helps to detect novel associations and refine genomic location. Our results show the value of the information provided by the two most commonly used high-throughput proteomics platforms and demonstrate the differences between them that at times provides useful complementarity.
Subject(s)
Blood Proteins , Disease Susceptibility , Genomics , Genotype , Phenotype , Proteomics , Humans , Africa/ethnology , Asia, Southern/ethnology , Biological Specimen Banks , Blood Proteins/analysis , Blood Proteins/genetics , Datasets as Topic , Genome, Human/genetics , Iceland/ethnology , Ireland/ethnology , Plasma/chemistry , Proteome/analysis , Proteome/genetics , Proteomics/methods , Quantitative Trait Loci , United KingdomABSTRACT
Autoimmune thyroid disease is the most common autoimmune disease and is highly heritable1. Here, by using a genome-wide association study of 30,234 cases and 725,172 controls from Iceland and the UK Biobank, we find 99 sequence variants at 93 loci, of which 84 variants are previously unreported2-7. A low-frequency (1.36%) intronic variant in FLT3 (rs76428106-C) has the largest effect on risk of autoimmune thyroid disease (odds ratio (OR) = 1.46, P = 2.37 × 10-24). rs76428106-C is also associated with systemic lupus erythematosus (OR = 1.90, P = 6.46 × 10-4), rheumatoid factor and/or anti-CCP-positive rheumatoid arthritis (OR = 1.41, P = 4.31 × 10-4) and coeliac disease (OR = 1.62, P = 1.20 × 10-4). FLT3 encodes fms-related tyrosine kinase 3, a receptor that regulates haematopoietic progenitor and dendritic cells. RNA sequencing revealed that rs76428106-C generates a cryptic splice site, which introduces a stop codon in 30% of transcripts that are predicted to encode a truncated protein, which lacks its tyrosine kinase domains. Each copy of rs76428106-C doubles the plasma levels of the FTL3 ligand. Activating somatic mutations in FLT3 are associated with acute myeloid leukaemia8 with a poor prognosis and rs76428106-C also predisposes individuals to acute myeloid leukaemia (OR = 1.90, P = 5.40 × 10-3). Thus, a predicted loss-of-function germline mutation in FLT3 causes a reduction in full-length FLT3, with a compensatory increase in the levels of its ligand and an increased disease risk, similar to that of a gain-of-function mutation.
Subject(s)
Codon, Nonsense/genetics , Genetic Predisposition to Disease/genetics , Ligands , Mutation , Thyroiditis, Autoimmune/genetics , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Alleles , Autoimmune Diseases/genetics , Databases, Factual , Genome-Wide Association Study , Germ-Line Mutation , Humans , Iceland , Introns/genetics , Leukemia, Myeloid, Acute , Loss of Function Mutation , RNA Splice Sites/genetics , United KingdomABSTRACT
BACKGROUND: Signal Transducer and Activator of Transcription 6 (STAT6) is central to Type 2 (T2) inflammation and common non-coding variants at the STAT6 locus associate with various T2 inflammatory traits, including diseases, and its pathway is widely targeted in asthma treatment. OBJECTIVE: To test the association of a rare missense variant in STAT6, p.L406P, with T2 inflammatory traits, including the risk of asthma and allergic diseases, and to characterize its functional consequences in cell culture. METHODS: We tested association of p.L406P with plasma protein levels, white blood cell counts and the risk of asthma and allergic phenotypes. We tested significant associations in other cohorts using a burden test. The effects of p.L406P on STAT6 protein function were examined in cell lines and by comparing CD4+ T-cell responses from carriers and non-carriers of the variant. RESULTS: p.L406P associated with reduced plasma levels of STAT6 and IgE as well as with lower eosinophil and basophil counts in blood. It also protected against asthma, mostly driven by severe T2 high asthma. We showed that p.L406P led to lower IL-4-induced activation in luciferase reporter assays and lower levels of STAT6 in CD4+ T cells. We identified multiple genes with expression that was affected by the p.L406P genotype upon IL-4 treatment of CD4+ T cells; the effect was consistent with a weaker IL-4 response in carriers than non-carriers of p.L406P. CONCLUSIONS: We report a partial loss-of-function variant in STAT6, resulting in dampened IL-4 responses and protection from T2 high asthma, implicating STAT6 as an attractive therapeutic target.
ABSTRACT
Alum has been widely used as an adjuvant for human vaccines; however, the impact of Alum on host metabolism remains largely unknown. Herein, we applied mass spectrometry (MS) (liquid chromatography-MS)-based metabolic and lipid profiling to monitor the effects of the Alum adjuvant on mouse serum at 6, 24, 72, and 168 h post-vaccination. We propose a new strategy termed subclass identification and annotation for metabolomics for class-wise identification of untargeted metabolomics data generated from high-resolution MS. Using this approach, we identified and validated the levels of several lipids in mouse serum that were significantly altered following Alum administration. These lipids showed a biphasic response even 168 h after vaccination. The majority of the lipids were triglycerides (TAGs), where TAGs with long-chain unsaturated fatty acids (FAs) decreased at 24 h and TAGs with short-chain FAs decreased at 168 h. To our knowledge, this is the first report on the impact of human vaccine adjuvant Alum on the host metabolome, which may provide new insights into the mechanism of action of Alum.
Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Metabolomics/methods , Triglycerides/blood , Animals , Antigens, Bacterial/administration & dosage , Chromatography, Liquid , Female , Immunization , Lipids/blood , Mass Spectrometry , Mice, Inbred Strains , Reproducibility of Results , Time Factors , Tuberculosis Vaccines/pharmacologyABSTRACT
Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.
Subject(s)
Antigens, CD , Codon, Initiator , Genetic Predisposition to Disease , Lymphocyte Activation Gene 3 Protein , Humans , Codon, Initiator/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Female , Polymorphism, Single Nucleotide , Vitiligo/genetics , Male , Genome-Wide Association Study , Thyroiditis, Autoimmune/genetics , 5' Untranslated Regions/genetics , Case-Control Studies , Iceland , AdultABSTRACT
Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4), encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here, we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years, we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma, autoimmune diseases, and blood traits. Seven variants map to the IGH locus, three to the Fcγ receptor (FCGR) locus, and two to the human leukocyte antigen (HLA) region, affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f), G2m(n) and G3m(b*) allotypes, and IgG1, IgG2 and IgG3, respectively. Additionally, we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3, ZPBP2, GSDMB, ORMDL3). Interestingly, the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics.
Subject(s)
Asthma , Genome-Wide Association Study , Immunoglobulin G , Polymorphism, Single Nucleotide , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Adult , Female , Male , Asthma/genetics , Asthma/immunology , Asthma/blood , Child , Adolescent , Receptors, IgG/genetics , Middle Aged , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/blood , Alleles , Young Adult , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Chromosomes, Human, Pair 17/genetics , Genetic Predisposition to Disease , HLA Antigens/genetics , HLA Antigens/immunology , Membrane ProteinsABSTRACT
Introduction: C-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults. Methods: Here, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF®01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses. Results: On day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10. CAF01 induced mixed Th1/Th17 neonatal responses while T cell responses induced by GLA-SE had a more pronounced Th2-profile. Only CAF01 induced T follicular helper (Tfh) cells expressing high levels of IL21 similar to levels induced in adult mice, which is essential for germinal center (GC) formation. Accordingly, only CAF01- induced neonatal Tfh cells activated adoptively transferred hen egg lysozyme (HEL)-specific B cells to form HEL+ GC B cells in neonatal mice upon vaccination with HEL-OVA. Discussion: Collectively, the data show that CLR-based adjuvants are promising neonatal and infant adjuvants due to their ability to harness Tfh responses in early life.
Subject(s)
B-Lymphocytes , Germinal Center , Lectins, C-Type , T Follicular Helper Cells , Animals , Mice , Adjuvants, Immunologic/pharmacology , Lectins, C-Type/agonists , Animals, NewbornABSTRACT
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single hematopoietic stem cell lineage. Using whole-genome sequencing of 45,510 Icelandic and 130,709 UK Biobank participants combined with a mutational barcode method, we identified 16,306 people with CH. Prevalence approaches 50% in elderly participants. Smoking demonstrates a dosage-dependent impact on risk of CH. CH associates with several smoking-related diseases. Contrary to published claims, we find no evidence that CH is associated with cardiovascular disease. We provide evidence that CH is driven by genes that are commonly mutated in myeloid neoplasia and implicate several new driver genes. The presence and nature of a driver mutation alters the risk profile for hematological disorders. Nevertheless, most CH cases have no known driver mutations. A CH genome-wide association study identified 25 loci, including 19 not implicated previously in CH. Splicing, protein and expression quantitative trait loci were identified for CD164 and TCL1A.
Subject(s)
Clonal Hematopoiesis , Genome-Wide Association Study , Humans , Aged , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Mutation/genetics , Hematopoietic Stem Cells/metabolismABSTRACT
Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
Subject(s)
Proteins , Humans , Animals , Mice , Homozygote , Genotype , Proteins/genetics , Genes, RecessiveABSTRACT
By the end of July 2021, the majority of the Icelandic population had received vaccination against COVID-19. In mid-July a wave of SARS-CoV-2 infections, dominated by the Delta variant, spread through the population, followed by an Omicron wave in December. A booster vaccination campaign was initiated to curb the spread of the virus. We estimate the risk of infection for different vaccine combinations using vaccination data from 276,028 persons and 963,557 qPCR tests for 277,687 persons. We measure anti-Spike-RBD antibody levels and ACE2-Spike binding inhibitory activity in 371 persons who received one of four recommended vaccination schedules with or without an mRNA vaccine booster. Overall, we find different antibody levels and inhibitory activity in recommended vaccination schedules, reflected in the observed risk of SARS-CoV-2 infections. We observe an increased protection following mRNA boosters, against both Omicron and Delta variant infections, although BNT162b2 boosters provide greater protection against Omicron than mRNA-1273 boosters.
Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Viral/metabolism , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Iceland/epidemiology , RNA, Messenger , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA VaccinesABSTRACT
Memory T-cell responses following SARS-CoV-2 infection have been extensively investigated but many studies have been small with a limited range of disease severity. Here we analyze SARS-CoV-2 reactive T-cell responses in 768 convalescent SARS-CoV-2-infected (cases) and 500 uninfected (controls) Icelanders. The T-cell responses are stable three to eight months after SARS-CoV-2 infection, irrespective of disease severity and even those with the mildest symptoms induce broad and persistent T-cell responses. Robust CD4+ T-cell responses are detected against all measured proteins (M, N, S and S1) while the N protein induces strongest CD8+ T-cell responses. CD4+ T-cell responses correlate with disease severity, humoral responses and age, whereas CD8+ T-cell responses correlate with age and functional antibodies. Further, CD8+ T-cell responses associate with several class I HLA alleles. Our results, provide new insight into HLA restriction of CD8+ T-cell immunity and other factors contributing to heterogeneity of T-cell responses following SARS-CoV-2 infection.
Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , CD8-Positive T-Lymphocytes , COVID-19/genetics , Humans , Severity of Illness IndexABSTRACT
Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and has a largely unknown underlying biology. In a genome-wide association study of CTS (48,843 cases and 1,190,837 controls), we found 53 sequence variants at 50 loci associated with the syndrome. The most significant association is with a missense variant (p.Glu366Lys) in SERPINA1 that protects against CTS (P = 2.9 × 10-24, OR = 0.76). Through various functional analyses, we conclude that at least 22 genes mediate CTS risk and highlight the role of 19 CTS variants in the biology of the extracellular matrix. We show that the genetic component to the risk is higher in bilateral/recurrent/persistent cases than nonrecurrent/nonpersistent cases. Anthropometric traits including height and BMI are genetically correlated with CTS, in addition to early hormonal-replacement therapy, osteoarthritis, and restlessness. Our findings suggest that the components of the extracellular matrix play a key role in the pathogenesis of CTS.
Subject(s)
Carpal Tunnel Syndrome , Anthropometry , Carpal Tunnel Syndrome/genetics , Genetic Loci , Genome-Wide Association Study , Humans , PhenotypeABSTRACT
BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.
Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Asthma/diagnosis , Genome-Wide Association Study , Humans , Lung , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/geneticsABSTRACT
The plasma proteome can help bridge the gap between the genome and diseases. Here we describe genome-wide association studies (GWASs) of plasma protein levels measured with 4,907 aptamers in 35,559 Icelanders. We found 18,084 associations between sequence variants and levels of proteins in plasma (protein quantitative trait loci; pQTL), of which 19% were with rare variants (minor allele frequency (MAF) < 1%). We tested plasma protein levels for association with 373 diseases and other traits and identified 257,490 associations. We integrated pQTL and genetic associations with diseases and other traits and found that 12% of 45,334 lead associations in the GWAS Catalog are with variants in high linkage disequilibrium with pQTL. We identified 938 genes encoding potential drug targets with variants that influence levels of possible biomarkers. Combining proteomics, genomics and transcriptomics, we provide a valuable resource that can be used to improve understanding of disease pathogenesis and to assist with drug discovery and development.
Subject(s)
Blood Proteins/genetics , Disease/genetics , Proteome/genetics , Biomarkers/blood , Blood Proteins/metabolism , Female , Gene Frequency , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Quantitative Trait LociABSTRACT
Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3' UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFßR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.
Subject(s)
Airway Remodeling/genetics , Asthma/genetics , Ki-1 Antigen/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , T-Lymphocytes/immunology , 3' Untranslated Regions/genetics , Airway Remodeling/immunology , Asthma/immunology , Eosinophils , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Iceland , Ki-1 Antigen/immunology , Ki-1 Antigen/metabolism , Leukocyte Count , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/immunology , Quantitative Trait Loci/immunology , Receptor, Transforming Growth Factor-beta Type I/immunology , Receptor, Transforming Growth Factor-beta Type I/metabolism , United KingdomABSTRACT
Nasal polyps (NP) are lesions on the nasal and paranasal sinus mucosa and are a risk factor for chronic rhinosinusitis (CRS). We performed genome-wide association studies on NP and CRS in Iceland and the UK (using UK Biobank data) with 4,366 NP cases, 5,608 CRS cases, and >700,000 controls. We found 10 markers associated with NP and 2 with CRS. We also tested 210 markers reported to associate with eosinophil count, yielding 17 additional NP associations. Of the 27 NP signals, 7 associate with CRS and 13 with asthma. Most notably, a missense variant in ALOX15 that causes a p.Thr560Met alteration in arachidonate 15-lipoxygenase (15-LO) confers large genome-wide significant protection against NP (P = 8.0 × 10-27, odds ratio = 0.32; 95% confidence interval = 0.26, 0.39) and CRS (P = 1.1 × 10-8, odds ratio = 0.64; 95% confidence interval = 0.55, 0.75). p.Thr560Met, carried by around 1 in 20 Europeans, was previously shown to cause near total loss of 15-LO enzymatic activity. Our findings identify 15-LO as a potential target for therapeutic intervention in NP and CRS.
Subject(s)
Arachidonate 15-Lipoxygenase/genetics , Genetic Variation/genetics , Nasal Polyps/genetics , Sinusitis/genetics , Adult , Asthma/genetics , Chronic Disease , Eosinophils/pathology , Female , Genome-Wide Association Study/methods , Humans , Iceland , Leukocyte Count/methods , Male , Nasal Polyps/pathology , Sinusitis/pathologyABSTRACT
Systems biology approaches have recently provided new insights into the mechanisms of action of human vaccines and adjuvants. Here, we investigated early transcriptional signatures induced in whole blood of healthy subjects following vaccination with a recombinant HIV-1 envelope glycoprotein subunit CN54gp140 adjuvanted with the TLR4 agonist glucopyranosyl lipid adjuvant-aqueous formulation (GLA-AF) and correlated signatures to CN54gp140-specific serum antibody responses. Fourteen healthy volunteers aged 18-45 years were immunized intramuscularly three times at 1-month intervals and whole blood samples were collected at baseline, 6 h, and 1, 3, and 7 days post first immunization. Subtle changes in the transcriptomic profiles were observed following immunization, ranging from over 300 differentially expressed genes (DEGs) at day 1 to nearly 100 DEGs at day 7 following immunization. Functional pathway analysis revealed blood transcription modules (BTMs) related to general cell cycle activation, and innate immune cell activation at early time points, as well as BTMs related to T cells and B cell activation at the later time points post-immunization. Diverse CN54gp140-specific serum antibody responses of the subjects enabled their categorization into high or low responders, at early (<1 month) and late (up to 6 months) time points post vaccination. BTM analyses revealed repression of modules enriched in NK cells, and the mitochondrial electron chain, in individuals with high or sustained antigen-specific antibody responses. However, low responders showed an enhancement of BTMs associated with enrichment in myeloid cells and monocytes as well as integrin cell surface interactions. Flow cytometry analysis of peripheral blood mononuclear cells obtained from the subjects revealed an enhanced frequency of CD56dim NK cells in the majority of vaccines 14 days after vaccination as compared with the baseline. These results emphasize the utility of a systems biology approach to enhance our understanding on the mechanisms of action of TLR4 adjuvanted human vaccines.
Subject(s)
AIDS Vaccines/pharmacology , Adjuvants, Immunologic/pharmacology , Transcriptome/drug effects , AIDS Vaccines/immunology , Adolescent , Adult , Female , HIV Antibodies/blood , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1 , Humans , Lymphocyte Activation/drug effects , Male , Middle Aged , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Systems Biology/methods , Toll-Like Receptor 4/agonists , Young Adult , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/pharmacologyABSTRACT
Influenza vaccination remains the best strategy for the prevention of influenza virus-related disease and reduction of disease severity and mortality. However, there is large individual variation in influenza vaccine responses. In this study, we investigated the effects of gender, age, underlying diseases, and medication on vaccine responses in 1,852 Icelanders of broad age range who received trivalent inactivated influenza virus vaccination in 2012, 2013, or 2015. Hemagglutination inhibition (HAI) and microneutralization (MN) titers were measured in pre- and post-vaccination sera. Of the variables tested, the strongest association was with level of pre-vaccination titer that explained a major part of the variance observed in post-vaccination titers, ranging from 19 to 29%, and from 7 to 21% in fold change (FC), depending on the strain and serological (HAI or MN) analysis performed. Thus, increasing pre-vaccination titer associated with decreasing FC (P = 1.1 × 10-99-8.6 × 10-30) and increasing post-vaccination titer (P = 2.1 × 10-159-1.1 × 10-123). Questionnaires completed by 87% of the participants revealed that post-vaccination HAI titer showed association with repeated previous influenza vaccinations. Gender had no effect on vaccine response whereas age had a strong effect and explained 1.6-3.1% of HAI post-vaccination titer variance and 3.1% of H1N1 MN titer variance. Vaccine response, both fold increase and seroprotection rate (percentage of individuals reaching HAI ≥ 40 or MN ≥ 20), was higher in vaccinees ≤37 years of age (YoA) than all other age groups. Furthermore, a reduction was observed in the H1N1 MN titer in people ≥63 YoA, demonstrating a decreased neutralizing functionality of vaccine-induced antibodies at older age. We tested the effects of underlying autoimmune diseases, asthma and allergic diseases and did not observe significant associations with vaccine responses. Intake of immune modulating medication did not show any association. Taken together, our results show that previous encounter of influenza vaccination or infection, reflected in high HAI and MN pre-vaccination titer has the strongest negative effect on vaccine responses measured as FC and the strongest positive effect on post-vaccination titer. Increasing age had also an effect but not gender, underlying disease or medication.