Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Molecules ; 25(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414020

ABSTRACT

The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.


Subject(s)
Benzophenones/chemistry , Diazomethane/chemistry , Photoaffinity Labels/chemistry , Photochemistry
2.
Methods Mol Biol ; 2589: 481-492, 2023.
Article in English | MEDLINE | ID: mdl-36255644

ABSTRACT

Histone deacetylase 6 (HDAC6) is an emerging clinical target for the treatment of several hematological cancers and central nervous system disorders. HDAC6 catalyzes the deacetylation of lysine residues on substrates such as tubulin, with profound implications in key cellular processes, including cellular motility and migration. This critical deacetylation activity occurs at the catalytic domain 2 (CD2) of HDAC6, and small molecule inhibitors of HDAC6 are designed to target CD2. We briefly highlight previously reported strategies for recombinant bacterial expression and purification of the HDAC6 CD2. We aim to discuss competition assays that have been used to evaluate the potency of potential HDAC6 inhibitors against CD2 via displacement of pre-bound fluorescent HDAC-probes. Moreover, we elaborate on previous protocols that have been employed in inhibitor screening and present an HDAC6-selective probe that also enables rapid and reliable high-throughput screening of new chemical entities designed to target the HDAC6 CD2.


Subject(s)
Histone Deacetylase Inhibitors , Tubulin , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase 6/metabolism , Tubulin/metabolism , Lysine/metabolism , Acetylation , Fluorescence Polarization
3.
ChemMedChem ; 17(18): e202100622, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35983937

ABSTRACT

Schistosomiasis is a prevalent yet neglected tropical parasitic disease caused by the Schistosoma genus of blood flukes. Praziquantel is the only currently available treatment, hence drug resistance poses a major threat. Recently, histone deacetylase 8 (HDAC8) selective inhibitors have been proposed as a viable treatment for schistosomiasis. Herein, we report the phenotypic screening of a focused library of small molecules of varying HDAC isozyme-inhibition profiles, including eight HDAC8 inhibitors with >10-fold selectivity in comparable functional inhibition assays and IC50 values against HDAC8<100 nM. HDAC8-selective inhibitors showed the lowest potency against Schistosoma mansoni newly transformed schistosomula (NTS). Pan-HDAC inhibitors MMH258, MMH259, and MMH373, as assessed by functional inhibition assays, with minimal or no-observed hHDAC8 and SmHDAC8 activities, were active against both NTS (MMH258, IC50 =1.5 µM; MMH259, IC50 =2.3 µM) and adult S. mansoni (MMH258, IC50 =2.1 µM; MMH373, IC50 =3.4 µM). Our results indicate that neither hHDAC8 nor SmHDAC8 activity were directly correlated to their NTS and adult S. mansoni activities.


Subject(s)
Histone Deacetylase Inhibitors , Schistosomiasis , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases , Humans , Isoenzymes , Praziquantel/therapeutic use , Repressor Proteins , Schistosoma mansoni , Schistosomiasis/drug therapy
4.
J Med Chem ; 65(4): 3193-3217, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35119267

ABSTRACT

Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Medulloblastoma/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Computer Simulation , Drug Discovery , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Docking Simulation , Neoplastic Stem Cells/drug effects , Structure-Activity Relationship
5.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36341492

ABSTRACT

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Subject(s)
Lymphoma, T-Cell, Cutaneous , p21-Activated Kinases , Animals , Mice , Genomics , Heterografts , Lymphoma, T-Cell, Cutaneous/drug therapy
6.
J Med Chem ; 64(5): 2691-2704, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33576627

ABSTRACT

Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes, ranging from cellular stress to intracellular transport. Inhibition of aberrant HDAC6 activity in several cancers and neurological diseases has been shown to be efficacious in both preclinical and clinical studies. While selective HDAC6 targeting has been pursued as an alternative to pan-HDAC drugs, identifying truly selective molecular templates has not been trivial. Herein, we report a structure-activity relationship study yielding TO-317, which potently binds HDAC6 catalytic domain 2 (Ki = 0.7 nM) and inhibits the enzyme function (IC50 = 2 nM). TO-317 exhibits 158-fold selectivity for HDAC6 over other HDAC isozymes by binding the catalytic Zn2+ and, uniquely, making a never seen before direct hydrogen bond with the Zn2+ coordinating residue, His614. This novel structural motif targeting the second-sphere His614 interaction, observed in a 1.84 Å resolution crystal structure with drHDAC6 from zebrafish, can provide new pharmacophores for identifying enthalpically driven, high-affinity, HDAC6-selective inhibitors.


Subject(s)
Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Sulfonamides/pharmacology , Animals , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacokinetics , Male , Mice, Inbred BALB C , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/metabolism
7.
J Med Chem ; 64(12): 8486-8509, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34101461

ABSTRACT

Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as stand-alone or in combination with targeted drugs.


Subject(s)
Antineoplastic Agents/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Leukemia, Prolymphocytic, T-Cell/drug therapy , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Bendamustine Hydrochloride/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Synergism , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Male , Mice , Molecular Docking Simulation , Molecular Structure , Pyrrolidines/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , para-Aminobenzoates/pharmacology
8.
J Pharm Biomed Anal ; 184: 113182, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32113119

ABSTRACT

Signal transducer and activator of transcription 5B (STAT5B) is constitutively activated in multiple cancers as a result of hyperactivating mutations or dysregulation of upstream effectors. Therapeutic strategies have predominantly targeted the Src homology 2 (SH2) domain to inhibit STAT phosphorylation, a prerequisite for STAT5B transcriptional activation. An alternative approach for STAT5B pharmacologic inhibition involves targeting the DNA-binding domain (DBD). However, this strategy remains relatively unexplored and is further hindered by the lack of a high-throughput in vitro engagement assay. Herein, we present the development and optimization of a STAT5B DBD fluorescence polarization (FP) assay, which facilitates rapid screening of small molecules targeting the STAT5B DBD though displacement of a fluorescently labelled oligonucleotide. The assay can generate a complete DNA-binding profile in 10 min, with signal stability up to 2 h, and minimal changes under a range of conditions including 10 % (v/v) glycerol, 15 % (v/v) DMSO, 1 mM NaCl, 0.02 % (w/v) BSA, and 1 mM EDTA. This assay is compatible with both unphosphorylated and phosphorylated STAT5B and demonstrates suitability for high-throughput screening with a Z' factor of 0.68 ±â€¯0.07 and a signal to noise ratio of 6.7 ±â€¯0.84.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Fluorescence Polarization/methods , High-Throughput Screening Assays/methods , Protein Domains/drug effects , STAT5 Transcription Factor/antagonists & inhibitors , DNA/metabolism , DNA-Binding Proteins/metabolism , Humans , Oligonucleotides/metabolism , STAT5 Transcription Factor/metabolism
9.
J Med Chem ; 63(15): 8634-8648, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32672458

ABSTRACT

Histone deacetylases (HDACs) are an attractive therapeutic target for a variety of human diseases. Currently, all four FDA-approved HDAC-targeting drugs are nonselective, pan-HDAC inhibitors, exhibiting adverse side effects at therapeutic doses. Although selective HDAC inhibition has been proposed to mitigate toxicity, the targeted catalytic domains are highly conserved. Herein, we describe a series of rationally designed, conformationally constrained, benzanilide foldamers which selectively bind the catalytic tunnel of HDAC8. The series includes benzanilides, MMH371, MMH409, and MMH410, which exhibit potent in vitro HDAC8 activity (IC50 = 66, 23, and 66 nM, respectively) and up to 410-fold selectivity for HDAC8 over the next targeted HDAC. Experimental and computational analyses of the benzanilide structure docked with human HDAC8 enzyme showed the adoption of a low-energy L-shaped conformer that favors HDAC8 selectivity. The conformationally constrained HDAC8 inhibitors present an alternative biological probe for further determining the clinical utility and safety of pharmacological knockdown of HDAC8 in diseased cells.


Subject(s)
Anilides/chemistry , Anilides/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Repressor Proteins/antagonists & inhibitors , Catalytic Domain/drug effects , Drug Design , Histone Deacetylases/metabolism , Humans , Molecular Docking Simulation , Repressor Proteins/metabolism , Structure-Activity Relationship
10.
Eur J Med Chem ; 201: 112411, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32615502

ABSTRACT

Dysregulated Histone Deacetylase (HDAC) activity across multiple human pathologies have highlighted this family of epigenetic enzymes as critical druggable targets, amenable to small molecule intervention. While efficacious, current approaches using non-selective HDAC inhibitors (HDACi) have been shown to cause a range of undesirable clinical toxicities. To circumvent this, recent efforts have focused on the design of highly selective HDACi as a novel therapeutic strategy. Beyond roles in regulating transcription, the unique HDAC6 (with two catalytic domains) regulates the deacetylation of α-tubulin; promoting growth factor-controlled cell motility, cell division, and metastatic hallmarks. Recent studies have linked aberrant HDAC6 function in various hematological cancers including acute myeloid leukaemia and multiple myeloma. Herein, we report the discovery, in vitro characterization, and biological evaluation of PTG-0861 (JG-265), a novel HDAC6-selective inhibitor with strong isozyme-selectivity (∼36× ) and low nanomolar potency (IC50 = 5.92 nM) against HDAC6. This selectivity profile was rationalized via in silico docking studies and also observed in cellulo through cellular target engagement. Moreover, PTG-0861 achieved relevant potency against several blood cancer cell lines (e.g. MV4-11, MM1S), whilst showing limited cytotoxicity against non-malignant cells (e.g. NHF, HUVEC) and CD-1 mice. In examining compound stability and cellular permeability, PTG-0861 revealed a promising in vitro pharmacokinetic (PK) profile. Altogether, in this study we identified a novel and potent HDAC6-selective inhibitor (∼4× more selective than current clinical standards - citarinostat, ricolinostat), which achieves cellular target engagement, efficacy in hematological cancer cells with a promising safety profile and in vitro PK.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Benzamides/chemical synthesis , Benzamides/metabolism , Benzamides/pharmacokinetics , Catalytic Domain , Cell Line, Tumor , Histone Deacetylase 6/chemistry , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacokinetics , Male , Mice , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
11.
ACS Med Chem Lett ; 11(1): 56-64, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31938464

ABSTRACT

The HDAC inhibitor 4-tert-butyl-N-(4-(hydroxycarbamoyl)phenyl)benzamide (AES-350, 51) was identified as a promising preclinical candidate for the treatment of acute myeloid leukemia (AML), an aggressive malignancy with a meagre 24% 5-year survival rate. Through screening of low-molecular-weight analogues derived from the previously discovered novel HDAC inhibitor, AES-135, compound 51 demonstrated greater HDAC isoform selectivity, higher cytotoxicity in MV4-11 cells, an improved therapeutic window, and more efficient absorption through cellular and lipid membranes. Compound 51 also demonstrated improved oral bioavailability compared to SAHA in mouse models. A broad spectrum of experiments, including FACS, ELISA, and Western blotting, were performed to support our hypothesis that 51 dose-dependently triggers apoptosis in AML cells through HDAC inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL