Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(32): e2322863121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074276

ABSTRACT

The nitrogen isotopes of the organic matter preserved in fossil fish otoliths (ear stones) are a promising tool for reconstructing past environmental changes. We analyzed the 15N/14N ratio (δ15N) of fossil otolith-bound organic matter in Late Cretaceous fish otoliths (of Eutawichthys maastrichtiensis, Eutawichthys zideki and Pterothrissus sp.) from three deposits along the US east coast, with two of Campanian (83.6 to 77.9 Ma) and one Maastrichtian (72.1 to 66 Ma) age. δ15N and N content were insensitive to cleaning protocol and the preservation state of otolith morphological features, and N content differences among taxa were consistent across deposits, pointing to a fossil-native origin for the organic matter. All three species showed an increase in otolith-bound organic matter δ15N of ~4‰ from Campanian to Maastrichtian. As to its cause, the similar change in distinct genera argues against changing trophic level, and modern field data argue against the different locations of the sedimentary deposits. Rather, the lower δ15N in the Campanian is best interpreted as an environmental signal at the regional scale or greater, and it may be a consequence of the warmer global climate. A similar decrease has been observed in foraminifera-bound δ15N during warm periods of the Cenozoic, reflecting decreased water column denitrification and thus contraction of the ocean's oxygen deficient zones (ODZs) under warm conditions. The same δ15N-climate correlation in Cretaceous otoliths raises the prospect of an ODZ-to-climate relationship that has been consistent over the last ~80 My, applying before and after the end-Cretaceous mass extinction and spanning changes in continental configuration.


Subject(s)
Fishes , Fossils , Nitrogen Isotopes , Otolithic Membrane , Animals , Otolithic Membrane/chemistry , Otolithic Membrane/anatomy & histology , Nitrogen Isotopes/analysis , Fishes/metabolism , Fishes/anatomy & histology
2.
Rapid Commun Mass Spectrom ; 38(1): e9650, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38073197

ABSTRACT

The analysis of the nitrogen (N) isotopic composition of organic matter bound to fossil biomineral structures (BB-δ15 N) using the oxidation-denitrifier (O-D) method provides a novel tool to study past changes in N cycling processes. METHODS: We report a set of methodological improvements to the O-D method, including (a) a method for sealing the reaction vials in which the oxidation of organic N to NO3 - takes place, (b) a recipe for bypassing the pH adjustment step before the bacterial conversion of NO3 - to N2 O, and (c) a method for storing recrystallized dipotassium peroxodisulfate (K2 S2 O8 ) under Ar atmosphere. RESULTS: The new sealing method eliminates the occasional contamination and vial breakage that occurred previously while increasing sample throughput. The protocol for bypassing pH adjustment does not affect BB-δ15 N, and it significantly reduces the processing time. Storage of K2 S2 O8 reagent under Ar atmosphere produces stable oxidation blanks over more than 3.5 years. We report analytical blanks, accuracy, and precision for this methodology from eight users over the course of ~3.5 years of analyses at the Max Planck Institute for Chemistry. Our method produces analytical blanks characterized by low N content (0.30 ± 0.13 nmol N, 1σ, n = 195) and stable δ15 N (-2.20 ± 3.13‰, n = 195). The analysis of reference amino acid standards USGS 40 and USGS 65 indicates an overall accuracy of -0.23 ± 0.35‰ (1σ, n = 891). The analysis of in-house fossil standards gives similar analytical precision (1σ) across a range of BB-δ15 N values and biominerals: zooxanthellate coral standard PO-1 (6.08 ± 0.21‰, n = 267), azooxanthellate coral standard LO-1 (10.20 ± 0.28‰, n = 258), foraminifera standard MF-1 (5.92 ± 0.28‰, n = 243), and tooth enamel AG-Lox (4.06 ± 0.49‰, n = 78). CONCLUSIONS: The methodological improvements significantly increase sample throughput without compromising analytical precision or accuracy down to 1 nmol of N.

3.
Rapid Commun Mass Spectrom ; 30(12): 1365-83, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27197029

ABSTRACT

RATIONALE: The denitrifier method allows for highly sensitive measurement of the (15) N/(14) N (δ(15) N value) and (18) O/(16) O (δ(18) O value) of nitrate dissolved in natural waters and for highly sensitive δ(15) N measurement of other N forms (e.g., organic N) that can be converted into nitrate. Here, updates to instrumentation and protocols are described, and improvements in data quality are demonstrated. METHODS: A 'heart cut' of the N2 O was implemented in the extraction system to (1) minimize introduction of contaminants into the mass spectrometer, reducing isotopic drift and (2) decrease the fraction of sample lost at the open split to improve sensitivity. Referencing protocols were updated, including a correction scheme for a weak dependence of nitrate δ(18) O values on nitrate concentration. Analyses of samples from the US GEOTRACES North Atlantic Program and of reference solutions from the same analysis batches were used to characterize performance. RESULTS: The drift is typically <0.1‰ for both δ(15) N and δ(18) O values. Within-batch and inter-batch replication yields 1 standard deviation (SD) of ≤0.06‰ for δ(15) N values and ≤0.14‰ for δ(18) O values down to 5 µM nitrate and ≤0.08‰ and ≤0.23‰ at 2 and 1 µM. The blank is typically 0.06 nmol N, 0.3% of the N in a 20 nmol N sample. Differences between reference materials in seawater are indistinguishable from reported differences for δ(15) N values, with a contraction for δ(18) O values of ≤5%. CONCLUSIONS: The new instrumentation and protocols yield nitrate isotopic data with external precision of ≤0.1‰ for large sample sets such as those derived from oceanographic sections. Further study should investigate the causes of (1) the weak dependence of nitrate δ(18) O values on nitrate concentration and (2) the inter-batch variation in the δ(18) O contraction (due mostly to oxygen atom exchange with water). Nevertheless, comprehensive correction schemes are in place for the measurement of both the δ(15) N and δ(18) O values of nitrate. Copyright © 2016 John Wiley & Sons, Ltd.

4.
Sci Rep ; 12(1): 22011, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539445

ABSTRACT

Biological nitrogen fixation (BNF) by canonical molybdenum and complementary vanadium and iron-only nitrogenase isoforms is the primary natural source of newly fixed nitrogen. Understanding controls on global nitrogen cycling requires knowledge of the isoform responsible for environmental BNF. The isotopic acetylene reduction assay (ISARA), which measures carbon stable isotope (13C/12C) fractionation between ethylene and acetylene in acetylene reduction assays, is one of the few methods that can quantify isoform-specific BNF fluxes. Application of classical ISARA has been challenging because environmental BNF activity is often too low to generate sufficient ethylene for isotopic analyses. Here we describe a high sensitivity method to measure ethylene δ13C by in-line coupling of ethylene preconcentration to gas chromatography-combustion-isotope ratio mass spectrometry (EPCon-GC-C-IRMS). Ethylene requirements in samples with 10% v/v acetylene are reduced from > 500 to ~ 20 ppmv (~ 2 ppmv with prior offline acetylene removal). To increase robustness by reducing calibration error, single nitrogenase-isoform Azotobacter vinelandii mutants and environmental sample assays rely on a common acetylene source for ethylene production. Application of the Low BNF activity ISARA (LISARA) method to low nitrogen-fixing activity soils, leaf litter, decayed wood, cryptogams, and termites indicates complementary BNF in most sample types, calling for additional studies of isoform-specific BNF.


Subject(s)
Nitrogen Fixation , Nitrogenase , Nitrogenase/metabolism , Molybdenum , Nitrogen , Ethylenes , Alkynes
5.
Science ; 370(6522): 1348-1352, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33303618

ABSTRACT

Previous studies have suggested that during the late Pleistocene ice ages, surface-deep exchange was somehow weakened in the Southern Ocean's Antarctic Zone, which reduced the leakage of deeply sequestered carbon dioxide and thus contributed to the lower atmospheric carbon dioxide levels of the ice ages. Here, high-resolution diatom-bound nitrogen isotope measurements from the Indian sector of the Antarctic Zone reveal three modes of change in Southern Westerly Wind-driven upwelling, each affecting atmospheric carbon dioxide. Two modes, related to global climate and the bipolar seesaw, have been proposed previously. The third mode-which arises from the meridional temperature gradient as affected by Earth's obliquity (axial tilt)-can explain the lag of atmospheric carbon dioxide behind climate during glacial inception and deglaciation. This obliquity-induced lag, in turn, makes carbon dioxide a delayed climate amplifier in the late Pleistocene glacial cycles.

SELECTION OF CITATIONS
SEARCH DETAIL