Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Blood ; 123(21): 3305-15, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24723682

ABSTRACT

Targeted modulation of microenvironmental regulatory pathways may be essential to control myeloma and other genetically/clonally heterogeneous cancers. Here we report that human myeloma-associated monocytes/macrophages (MAM), but not myeloma plasma cells, constitute the predominant source of interleukin-1ß (IL-1ß), IL-10, and tumor necrosis factor-α at diagnosis, whereas IL-6 originates from stromal cells and macrophages. To dissect MAM activation/cytokine pathways, we analyzed Toll-like receptor (TLR) expression in human myeloma CD14(+) cells. We observed coregulation of TLR2 and TLR6 expression correlating with local processing of versican, a proteoglycan TLR2/6 agonist linked to carcinoma progression. Versican has not been mechanistically implicated in myeloma pathogenesis. We hypothesized that the most readily accessible target in the versican-TLR2/6 pathway would be the mitogen-activated protein 3 (MAP3) kinase, TPL2 (Cot/MAP3K8). Ablation of Tpl2 in the genetically engineered in vivo myeloma model, Vκ*MYC, led to prolonged disease latency associated with plasma cell growth defect. Tpl2 loss abrogated the "inflammatory switch" in MAM within nascent myeloma lesions and licensed macrophage repolarization in established tumors. MYC activation/expression in plasma cells was independent of Tpl2 activity. Pharmacologic TPL2 inhibition in human monocytes led to dose-dependent attenuation of IL-1ß induction/secretion in response to TLR2 stimulation. Our results highlight a TLR2/6-dependent TPL2 pathway as novel therapeutic target acting nonautonomously through macrophages to control myeloma progression.


Subject(s)
MAP Kinase Kinase Kinases/immunology , Macrophages/pathology , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Proto-Oncogene Proteins/immunology , Animals , Cytokines/analysis , Cytokines/immunology , Drug Discovery , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Interleukin-1beta/analysis , Interleukin-1beta/immunology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , Macrophages/immunology , Mice , Mice, Inbred C57BL , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Toll-Like Receptor 2/agonists , Toll-Like Receptor 6/genetics , Toll-Like Receptor 6/immunology , Tumor Microenvironment
2.
Leuk Lymphoma ; 54(10): 2112-21, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23432691

ABSTRACT

Multiple myeloma, a clonal plasma cell malignancy, has long provided a prototypic model to study regulatory interactions between malignant cells and their microenvironment. Myeloma-associated macrophages have historically received limited scrutiny, but recent work points to central and non-redundant roles in myeloma niche homeostasis. The evidence supports a paradigm of complex, dynamic and often mutable interactions between macrophages and other cellular constituents of the niche. We and others have shown that macrophages support myeloma cell growth, viability and drug resistance through both contact-mediated and non-contact-mediated mechanisms. These tumor-beneficial roles have evolved in opposition to, or in parallel with, intrinsic pro-inflammatory and tumoricidal properties. Thus, simple blockade of protective "don't eat me" signals on the surface of myeloma cells leads to macrophage-mediated myeloma cell killing. Macrophages also enhance the tumor-supportive role of mesenchymal stem/stromal cells (MSCs) in the niche: importantly, this interaction is bidirectional, producing a distinct state of macrophage polarization that we termed "MSC-educated macrophages." The intriguing pattern of cross-talk between macrophages, MSCs and tumor cells highlights the myeloma niche as a dynamic multi-cellular structure. Targeted reprogramming of these interactions harbors significant untapped therapeutic potential, particularly in the setting of minimal residual disease, the main obstacle toward a cure.


Subject(s)
Macrophages/immunology , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Animals , Cell Communication , Cell Survival , Humans , Immunotherapy , MAP Kinase Kinase Kinases/metabolism , Macrophage Activation/immunology , Macrophages/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Multiple Myeloma/therapy , Neovascularization, Pathologic , Phenotype , Proto-Oncogene Proteins/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL