Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Genes Cells ; 22(2): 148-159, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28084671

ABSTRACT

Ebola virus (EBOV) is extremely virulent, and its glycoprotein is necessary for viral entry. EBOV may adapt to its new host humans during outbreaks by acquiring mutations especially in glycoprotein, which allows EBOV to spread more efficiently. To identify these evolutionary selected mutations and examine their effects on viral infectivity, we used experimental-phylogenetic-structural interdisciplinary approaches. In evolutionary analysis of all available Zaire ebolavirus glycoprotein sequences, we detected two codon sites under positive selection, which are located near/within the region critical for the host-viral membrane fusion, namely alanine-to-valine and threonine-to-isoleucine mutations at 82 (A82V) and 544 (T544I), respectively. The fine-scale transmission dynamics of EBOV Makona variants that caused the 2014-2015 outbreak showed that A82V mutant was fixed in the population, whereas T544I was not. Furthermore, pseudotype assays for the Makona glycoprotein showed that the A82V mutation caused a small increase in viral infectivity compared with the T544I mutation. These findings suggest that mutation fixation in EBOV glycoprotein may be associated with their increased infectivity levels; the mutant with a moderate increase in infectivity will fix. Our findings showed that a driving force for Ebola virus evolution via glycoprotein may be a balance between costs and benefits of its virulence.


Subject(s)
Ebolavirus/genetics , Mutation , Viral Envelope Proteins/genetics , A549 Cells , Ebolavirus/metabolism , Evolution, Molecular , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/virology , High-Throughput Nucleotide Sequencing , Humans , Models, Molecular , Sequence Analysis, DNA/methods , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
2.
bioRxiv ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-35982683

ABSTRACT

Despite effective countermeasures, SARS-CoV-2 persists worldwide due to its ability to diversify and evade human immunity1. This evasion stems from amino-acid substitutions, particularly in the receptor-binding domain of the spike, that confer resistance to vaccines and antibodies 2-16. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different receptor binding domain (RBD) sites17,18 into multispecific antibodies. Here, we describe multispecific antibodies, including a trispecific that prevented virus escape >3000-fold more potently than the most effective clinical antibody or mixtures of the parental antibodies. Despite being generated before the evolution of Omicron, this trispecific antibody potently neutralized all previous variants of concern and major Omicron variants, including the most recent BA.4/BA.5 strains at nanomolar concentrations. Negative stain electron microscopy revealed that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated inter-spike binding. An optimized trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2 and BA.5, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. Such multispecific antibodies decrease the likelihood of SARS-CoV-2 escape, simplify treatment, and maximize coverage, providing a strategy for universal antibody therapies that could help eliminate pandemic spread for this and other pathogens.

3.
Science ; 373(6556)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34210892

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , COVID-19/virology , Humans , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mutation , Neutralization Tests , Protein Domains , Receptors, Coronavirus/antagonists & inhibitors , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
J Virol Methods ; 269: 30-37, 2019 07.
Article in English | MEDLINE | ID: mdl-30974179

ABSTRACT

Lassa virus (LASV) causes Lassa fever (LF), a viral hemorrhagic fever endemic in West Africa. LASV strains are clustered into six lineages according to their geographic location. To confirm a diagnosis of LF, a laboratory test is required. Here, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay using a portable device for the detection of LASV in southeast and south-central Nigeria using three primer sets specific for strains clustered in lineage II was developed. The assay detected in vitro transcribed LASV RNAs within 23 min and was further evaluated for detection in 73 plasma collected from suspected LF patients admitted into two health settings in southern Nigeria. The clinical evaluation using the conventional RT-PCR as the reference test revealed a sensitivity of 50% in general with 100% for samples with a viral titer of 9500 genome equivalent copies (geq)/mL and higher. The detection limit was estimated to be 4214 geq/mL. The assay showed 98% specificity with no cross-reactivity to other viruses which cause similar symptoms. These results suggest that this RT-LAMP assay is a useful molecular diagnostic test for LF during the acute phase, contributing to early patient management, while using a convenient device for field deployment and in resource-poor settings.


Subject(s)
Lassa Fever/diagnosis , Lassa virus/isolation & purification , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , DNA Primers/genetics , Genome, Viral , Humans , Lassa Fever/blood , Limit of Detection , Nigeria , Nucleic Acid Amplification Techniques/instrumentation , RNA, Viral/genetics , Sensitivity and Specificity , Temperature , Viral Load
5.
PLoS Negl Trop Dis ; 12(11): e0006971, 2018 11.
Article in English | MEDLINE | ID: mdl-30500827

ABSTRACT

Lassa virus (LASV) is endemic in parts of West Africa where it causes Lassa fever (LF), a viral hemorrhagic fever with frequent fatal outcomes. The diverse LASV strains are grouped into six major lineages based on the geographical location of the isolated strains. In this study, we have focused on the lineage II strains from southern Nigeria. We determined the viral sequences from positive cases of LF reported at tertiary hospitals in Ebonyi and Enugu between 2012 and 2016. Reverse transcription-polymerase chain reaction (RT-PCR) showed that 29 out of 123 suspected cases were positive for the virus among which 11 viral gene sequences were determined. Phylogenetic analysis of the complete coding sequences of the four viral proteins revealed that lineage II strains are broadly divided into two genetic clades that diverged from a common ancestor 195 years ago. One clade, consisting of strains from Ebonyi and Enugu, was more conserved than the other from Irrua, although the four viral proteins were evolving at similar rates in both clades. These results suggested that the viruses of these clades have been distinctively evolving in geographically separate parts of southern Nigeria. Furthermore, the epidemiological data of the 2014 outbreak highlighted the role of human-to-human transmission in this outbreak, which was supported by phylogenetic analysis showing that 13 of the 16 sequences clustered together. These results provide new insights into the evolution of LASV in southern Nigeria and have important implications for vaccine development, diagnostic assay design, and LF outbreak management.


Subject(s)
Lassa Fever/virology , Lassa virus/genetics , Lassa virus/isolation & purification , Evolution, Molecular , Genetic Variation , Humans , Lassa Fever/epidemiology , Lassa virus/classification , Nigeria/epidemiology , Phylogeny , Viral Proteins/genetics
6.
J Virol Methods ; 246: 8-14, 2017 08.
Article in English | MEDLINE | ID: mdl-28356221

ABSTRACT

Ebola virus disease (EVD), a highly virulent infectious disease caused by ebolaviruses, has a fatality rate of 25-90%. Without a licensed chemotherapeutic agent or vaccine for the treatment and prevention of EVD, control of outbreaks requires accurate and rapid diagnosis of cases. In this study, five sets of six oligonucleotide primers targeting the nucleoprotein gene were designed for specific identification of each of the five ebolavirus species using reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay. The detection limits of the ebolavirus species-specific primer sets were evaluated using in vitro transcribed RNAs. The detection limit of species-specific RT-LAMP assays for Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, and Bundibugyo ebolavirus was 256 copies/reaction, while the detection limit for Reston ebolavirus was 64 copies/reaction, and the detection time for each of the RT-LAMP assays was 13.3±3.0, 19.8±4.6, 14.3±0.6, 16.1±4.7, and 19.8±2.4min (mean±SD), respectively. The sensitivity of the species-specific RT-LAMP assays were similar to that of the established RT-PCR and quantitative RT-PCR assays for diagnosis of EVD and are suitable for field or point-of-care diagnosis. The RT-LAMP assays were specific for the detection of the respective species of ebolavirus with no cross reaction with other species of ebolavirus and other viral hemorrhagic fever viruses such as Marburg virus, Lassa fever virus, and Dengue virus. The species-specific RT-LAMP assays developed in this study are rapid, sensitive, and specific and could be useful in case of an EVD outbreak.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , DNA Primers , Dengue Virus/genetics , Ebolavirus/classification , Ebolavirus/genetics , Humans , Lassa virus/genetics , Limit of Detection , Marburgvirus/genetics , Nucleic Acid Amplification Techniques/instrumentation , Point-of-Care Systems , Reverse Transcription , Sensitivity and Specificity , Temperature
7.
PLoS Negl Trop Dis ; 10(2): e0004472, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26900929

ABSTRACT

Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Nucleic Acid Amplification Techniques/methods , DNA Primers/genetics , Ebolavirus/classification , Ebolavirus/isolation & purification , Guinea , Hemorrhagic Fever, Ebola/diagnosis , Humans , Nucleic Acid Amplification Techniques/instrumentation , Reverse Transcription , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL