Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 19(12): e1010625, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060463

ABSTRACT

The Japanese archipelago is a terminal location for human migration, and the contemporary Japanese people represent a unique population whose genomic diversity has been shaped by multiple migrations from Eurasia. We analyzed the genomic characteristics that define the genetic makeup of the modern Japanese population from a population genetics perspective from the genomic data of 9,287 samples obtained by high-coverage whole-genome sequencing (WGS) by the National Center Biobank Network. The dataset comprised populations from the Ryukyu Islands and other parts of the Japanese archipelago (Hondo). The Hondo population underwent two episodes of population decline during the Jomon period, corresponding to the Late Neolithic, and the Edo period, corresponding to the Early Modern era, while the Ryukyu population experienced a population decline during the shell midden period of the Late Neolithic in this region. Haplotype analysis suggested increased allele frequencies for genes related to alcohol and fatty acid metabolism, which were reported as loci that had experienced positive natural selection. Two genes related to alcohol metabolism were found to be 12,500 years out of phase with the time when they began to increase in the allele frequency; this finding indicates that the genomic diversity of Japanese people has been shaped by events closely related to agriculture and food production.


Subject(s)
East Asian People , Genetics, Population , Humans , Genetic Variation , Japan , Whole Genome Sequencing , East Asian People/genetics
2.
J Hum Genet ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020124

ABSTRACT

Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P-p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.92 (95% CI; 1.08 - 7.90, p = 0.0353).

3.
BMC Neurol ; 24(1): 119, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605286

ABSTRACT

BACKGROUND: Ischemic stroke in young adults can be caused by a variety of etiologies including the monogenic disorders. Visceral heterotaxy is a condition caused by abnormal left-right determinations during embryonic development. We aimed to determine the cause of a young ischemic stroke patient with visceral heterotaxy. CASE PRESENTATION: We performed neurological, radiological, and genetic evaluations in a 17-year-old male patient presenting ischemic stroke and visceral heterotaxy to determine the underlying cause of this rare disease combination. Brain magnetic resonance imaging (MRI) showed evidence of embolic stroke, abdominal computed tomography (CT) showed visceral heterotaxy, and echocardiogram showed cardiac anomaly with right-to-left-shunt (RLS). Whole genome sequencing (WGS) revealed a heterozygous missense variant (NM_018055.5: c.1016 T > C, p.(Met339Val)) in the NODAL gene, which is essential to the determination of the left-right body axis. CONCLUSIONS: Our study highlights the importance of evaluating genetic etiology in young ischemic stroke and the need for stroke risk management in visceral heterotaxy patients with RLS. To the best of our knowledge, we report the first genetically-confirmed case of visceral heterotaxy with young embolic stroke reported to date.


Subject(s)
Embolic Stroke , Heterotaxy Syndrome , Adolescent , Humans , Male , Cardiovascular Abnormalities , Heterotaxy Syndrome/genetics , Magnetic Resonance Imaging , Stroke/diagnostic imaging , Stroke/genetics
4.
Genes Immun ; 23(3-4): 123-128, 2022 06.
Article in English | MEDLINE | ID: mdl-35422513

ABSTRACT

Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is a severe syndrome of acute encephalopathy that affects infants and young children. AESD is a polygenic disorder preceded by common viral infections with high fever. We conducted an association study of human leukocyte antigen (HLA) regions with AESD using HLA imputation. SNP genotyping was performed on 254 Japanese patients with AESD and 799 healthy controls. We conducted 3-field HLA imputation for 14 HLA genes based on Japanese-specific references using data from our previous genome-wide association study. After quality control, 208 patients and 737 controls were included in the analysis of HLA alleles. We then compared the carrier frequencies of HLA alleles and haplotypes between the patients and controls. HLA-DPB1*04:01:01 showed a significant association with AESD, exerting a protective effect against the disease (p = 0.0053, pcorrected = 0.042, odds ratio = 0.43, 95% confidence interval = 0.21-0.80). The allele frequency of HLA-DPB1*04:01:01 was lower in East Asians than in Caucasians, which may partially account for the higher incidence of AESD in the Japanese population. The present results demonstrate the importance of fine-mapping of the HLA region to investigate disease susceptibilities and elucidate the pathogenesis of AESD.


Subject(s)
Brain Diseases , Genome-Wide Association Study , Child , Child, Preschool , HLA-DP beta-Chains/genetics , Histocompatibility Antigens Class II , Humans , Infant , Seizures/pathology
5.
Eur Respir J ; 58(2)2021 08.
Article in English | MEDLINE | ID: mdl-33542050

ABSTRACT

RATIONALE: Nontuberculous mycobacteria (NTM) are environmental mycobacteria that can cause a chronic progressive lung disease. Although epidemiological data indicate potential genetic predisposition, its nature remains unclear. OBJECTIVES: We aimed to identify host susceptibility loci for Mycobacterium avium complex (MAC), the most common NTM pathogen. METHODS: This genome-wide association study (GWAS) was conducted in Japanese patients with pulmonary MAC and healthy controls, followed by genotyping of candidate single-nucleotide polymorphisms (SNPs) in another Japanese cohort. For verification by Korean and European ancestry, we performed SNP genotyping. RESULTS: The GWAS discovery set included 475 pulmonary MAC cases and 417 controls. Both GWAS and replication analysis of 591 pulmonary MAC cases and 718 controls revealed the strongest association with chromosome 16p21, particularly with rs109592 (p=1.64×10-13, OR 0.54), which is in an intronic region of the calcineurin-like EF-hand protein 2 (CHP2). Expression quantitative trait loci analysis demonstrated an association with lung CHP2 expression. CHP2 was expressed in the lung tissue in pulmonary MAC disease. This SNP was associated with the nodular bronchiectasis subtype. Additionally, this SNP was significantly associated with the disease in patients of Korean (p=2.18×10-12, OR 0.54) and European (p=5.12×10-03, OR 0.63) ancestry. CONCLUSIONS: We identified rs109592 in the CHP2 locus as a susceptibility marker for pulmonary MAC disease.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium avium-intracellulare Infection , Genome-Wide Association Study , Humans , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium avium Complex , Nontuberculous Mycobacteria
6.
Article in English | MEDLINE | ID: mdl-31109976

ABSTRACT

Antituberculosis drug-induced liver injury (ATDILI) is a common side effect leading to tuberculosis (TB) treatment disruption. The mechanism of the disease remains poorly understood. We conducted a genomewide association study (GWAS) to investigate all possible genetic factors of ATDILI in Thai patients. This study was carried out in Thai TB patients, including 79 ATDILI cases and 239 tolerant controls from our network hospitals in Thailand. Nearly 1 million single-nucleotide polymorphisms (SNPs) were genotyped across the whole genome using an Illumina OmniExpress Exome BeadChip array. In the discovery stage, we identified strong association signals on chromosome 8 originating from the N-acetyltransferase (NAT2) region. The A allele of rs1495741, the top SNP in the intergenic region of NAT2 and PSD3 (14 kb from NAT2), was significantly associated with ATDILI (recessive model, odds ratio of 6.01 [95% confidence interval, 3.42 to 10.57]; P = 6.86E-11). This particular SNP was reported as a tag SNP for NAT2 inferred phenotypes. The AA, AG, and GG genotypes represented NAT2 slow acetylators, intermediate acetylators, and fast acetylators, respectively. The tag SNP genotypes demonstrated a concordance rate of 94.98% with NAT2 acetylator phenotypes. This GWAS shows that NAT2 is the most important risk factor for ATDILI in the Thai population.


Subject(s)
Antitubercular Agents/adverse effects , Arylamine N-Acetyltransferase/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Aged, 80 and over , Chemical and Drug Induced Liver Injury/genetics , Female , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , Male , Middle Aged , Thailand
7.
Transfusion ; 59(7): 2429-2435, 2019 07.
Article in English | MEDLINE | ID: mdl-31020675

ABSTRACT

BACKGROUND: Anti-KANNO, a broadly reactive RBC alloantibody, is found among some Japanese pregnant women, but the genetic basis of the corresponding antigen remains unclear. STUDY DESIGN AND METHODS: We integrated a statistical approach to identify the coding gene for KANNO antigen by conducting a genome-wide association study (GWAS) on four KANNO-negative individuals and 415 healthy Japanese. We also applied whole-exome sequencing to them and performed a replication study to confirm the identified genome variation using independent 14 KANNO-negative individuals. A monoclonal antibody-specific immobilization of erythrocyte antigens (MAIEA) assay was used to locate KANNO antigen on RBC-specific membrane protein. In vivo and in vitro binding assays of anti-KANNO were further applied to the cells expressing a candidate protein. RESULTS: The GWAS revealed a genome-wide significant association of chromosome 20p13 locus (p = 2.76E-08; odds ratio > 1000 [95% confidence interval = 48-23,674]). The identified single-nucleotide polymorphism located in an intronic region of the prion protein (PRNP) gene. Whole-exome sequencing revealed a missense variant in the PRNP gene (rs1800014, E219K), which is in linkage disequilibrium with the single-nucleotide polymorphism identified in the GWAS. All 18 KANNO-negative individuals possessed the homozygous genotype of the missense variant. The MAIEA assay using anti-KANNO and mouse antihuman prion protein showed a clear difference between KANNO-positive and KANNO-negative RBCs. Anti-KANNO showed direct binding to CHO-K1 cells expressing wild-type PRNP but not to those expressing E219K PRNP. CONCLUSION: We first identified the coding gene of the high-frequency antigen KANNO located in PRNP and the missense variation (E219K) that affects the seropositivity of the KANNO antigen, which were confirmed by PRNP overexpressed cells.


Subject(s)
Blood Group Antigens/genetics , Chromosomes, Human, Pair 20/genetics , Gene Frequency , Genome, Human , Glycoproteins/genetics , Polymorphism, Single Nucleotide , Prion Proteins/genetics , Genome-Wide Association Study , Humans
8.
J Am Soc Nephrol ; 29(8): 2189-2199, 2018 08.
Article in English | MEDLINE | ID: mdl-30012571

ABSTRACT

Background Nephrotic syndrome is the most common cause of chronic glomerular disease in children. Most of these patients develop steroid-sensitive nephrotic syndrome (SSNS), but the loci conferring susceptibility to childhood SSNS are mainly unknown.Methods We conducted a genome-wide association study (GWAS) in the Japanese population; 224 patients with childhood SSNS and 419 adult healthy controls were genotyped using the Affymetrix Japonica Array in the discovery stage. Imputation for six HLA genes (HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1) was conducted on the basis of Japanese-specific references. We performed genotyping for HLA-DRB1/-DQB1 using a sequence-specific oligonucleotide-probing method on a Luminex platform. Whole-genome imputation was conducted using a phased reference panel of 2049 healthy Japanese individuals. Replication was performed in an independent Japanese sample set including 216 patients and 719 healthy controls. We genotyped candidate single-nucleotide polymorphisms using the DigiTag2 assay.Results The most significant association was detected in the HLA-DR/DQ region and replicated (rs4642516 [minor allele G], combined Pallelic=7.84×10-23; odds ratio [OR], 0.33; 95% confidence interval [95% CI], 0.26 to 0.41; rs3134996 [minor allele A], combined Pallelic=1.72×10-25; OR, 0.29; 95% CI, 0.23 to 0.37). HLA-DRB1*08:02 (Pc=1.82×10-9; OR, 2.62; 95% CI, 1.94 to 3.54) and HLA-DQB1*06:04 (Pc=2.09×10-12; OR, 0.10; 95% CI, 0.05 to 0.21) were considered primary HLA alleles associated with childhood SSNS. HLA-DRB1*08:02-DQB1*03:02 (Pc=7.01×10-11; OR, 3.60; 95% CI, 2.46 to 5.29) was identified as the most significant genetic susceptibility factor.Conclusions The most significant association with childhood SSNS was detected in the HLA-DR/DQ region. Further HLA allele/haplotype analyses should enhance our understanding of molecular mechanisms underlying SSNS.


Subject(s)
Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Nephrotic Syndrome/genetics , Adult , Case-Control Studies , Child , Female , Genome-Wide Association Study , HLA-DQ beta-Chains/immunology , Haplotypes , Humans , Japan , Male , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/immunology , Polymorphism, Single Nucleotide , Reference Values , Steroids/therapeutic use
9.
J Hum Genet ; 62(12): 1015-1022, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28878339

ABSTRACT

Tuberculosis (TB) is known to be affected by host genetic factors. We reported a specific genetic risk factor through a genome-wide association study (GWAS) that focused on young age onset TB. In this study, we further focused on the heterogeneity of Mycobacterium tuberculosis (M. tb) lineages and assessed its possible interaction with age at onset on host genetic factors. We identified the pathogen lineage in 686 Thai TB cases and GWAS stratified by both infected pathogen lineage information and age at onset revealed a genome-wide significant association of one single-nucleotide polymorphism (SNP) on chromosome 1p13, which was specifically associated with non-Beijing lineage-infected old age onset cases (P=2.54E-08, OR=1.74 (95% CI=1.43-2.12)), when we compared them to the population-matched healthy controls. This SNP locates near the CD53 gene, which encodes a leukocyte surface glycoprotein. Interestingly, the expression of CD53 was also correlated with the patients' active TB status. This is the first report of a pathogen lineage-based genome-wide association study. The results suggested that host genetic risk in TB is depended upon the pathogen genetic background and demonstrate the importance of analyzing the interaction between host and pathogen genomes in TB.


Subject(s)
Genome, Bacterial/genetics , Genome, Human/genetics , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide/genetics , Tetraspanin 25/genetics , Tuberculosis/genetics , Genetic Loci/genetics , Genome-Wide Association Study , Genotype , Host-Pathogen Interactions , Humans , Risk Factors , Species Specificity , Thailand , Transcriptome , Tuberculosis/microbiology
10.
J Hum Genet ; 62(9): 831-838, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28424481

ABSTRACT

Antiphospholipid syndrome (APS) is the most important treatable cause of recurrent pregnancy loss. The live birth rate is limited to only 70-80% in patients with APS undergoing established anticoagulant therapy. Lupus anticoagulant (LA), but not anticardiolipin antibody (aCL), was found to predict adverse pregnancy outcome. Recent genome-wide association studies (GWAS) of APS focusing on aCL have shown that several molecules may be involved. This is the first GWAS for obstetric APS focusing on LA. A GWAS was performed to compare 115 Japanese patients with obstetric APS, diagnosed according to criteria of the International Congress on APS, and 419 healthy individuals. Allele or genotype frequencies were compared in a total of 426 344 single-nucleotide polymorphisms (SNPs). Imputation analyses were also performed for the candidate regions detected by the GWAS. One SNP (rs2288493) located on the 3'-UTR of TSHR showed an experiment-wide significant APS association (P=7.85E-08, OR=6.18) under a recessive model after Bonferroni correction considering the number of analyzed SNPs. Another SNP (rs79154414) located around the C1D showed a genome-wide significant APS association (P=4.84E-08, OR=6.20) under an allelic model after applying the SNP imputation. Our findings demonstrate that a specific genotype of TSHR and C1D genes can be a risk factor for obstetric APS.


Subject(s)
Antiphospholipid Syndrome/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Quantitative Trait Loci , Abortion, Habitual , Adult , Alleles , Antibodies, Anticardiolipin/immunology , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/immunology , Case-Control Studies , Female , Genotype , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Lupus Coagulation Inhibitor , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Pregnancy
11.
J Infect Dis ; 213(2): 295-304, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26160745

ABSTRACT

Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Toxins/metabolism , Gene Expression Regulation, Bacterial/physiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Gene Deletion , Mice , Quorum Sensing/physiology , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Trans-Activators/metabolism , Virulence
12.
PLoS Pathog ; 9(4): e1003269, 2013.
Article in English | MEDLINE | ID: mdl-23592990

ABSTRACT

Community acquired-methicillin resistant Staphylococcus aureus (CA-MRSA) is a socially problematic pathogen that infects healthy individuals, causing severe disease. CA-MRSA is more virulent than hospital associated-MRSA (HA-MRSA). The underlying mechanism for the high virulence of CA-MRSA is not known. The transcription product of the psm-mec gene, located in the mobile genetic element SCCmec of HA-MRSA, but not CA-MRSA, suppresses the expression of phenol-soluble modulin α (PSMα), a cytolytic toxin of S. aureus. Here we report that psm-mec RNA inhibits translation of the agrA gene encoding a positive transcription factor for the PSMα gene via specific binding to agrA mRNA. Furthermore, 25% of 325 clinical MRSA isolates had a mutation in the psm-mec promoter that attenuated transcription, and 9% of the strains had no psm-mec. In most of these psm-mec-mutated or psm-mec-deleted HA-MRSAs, PSMα expression was increased compared with strains carrying intact psm-mec, and some mutated strains produced high amounts of PSMα comparable with that of CA-MRSA. Deletion of psm-mec from HA-MRSA strains carrying intact psm-mec increased the expression of AgrA protein and PSMα, and virulence in mice. Thus, psm-mec RNA suppresses MRSA virulence via inhibition of agrA translation and the absence of psm-mec function in CA-MRSA causes its high virulence property.


Subject(s)
Bacterial Toxins/genetics , Interspersed Repetitive Sequences , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Skin Infections/microbiology , Animals , Bacterial Toxins/biosynthesis , Community-Acquired Infections/microbiology , Female , Mice , Mutation , Promoter Regions, Genetic , Protein Binding , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
13.
J Biol Chem ; 288(35): 25542-25550, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23873929

ABSTRACT

We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.


Subject(s)
Apolipoproteins , Bombyx/chemistry , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/biosynthesis , Insect Proteins , Lipopolysaccharides/metabolism , Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Animals , Apolipoproteins/chemistry , Apolipoproteins/isolation & purification , Apolipoproteins/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Insect Proteins/pharmacology , Lipopolysaccharides/genetics , Protein Binding , Protein Kinases/biosynthesis , Protein Kinases/genetics , Staphylococcus aureus/genetics , Teichoic Acids/genetics , Transcription Factors
14.
J Mol Diagn ; 26(2): 85-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008286

ABSTRACT

Hereditary repeat diseases are caused by an abnormal expansion of short tandem repeats in the genome. Among them, spinocerebellar ataxia (SCA) is a heterogeneous disease, and currently, 16 responsible repeats are known. Genetic diagnosis is obtained by analyzing the number of repeats through separate testing of each repeat. Although simultaneous detection of candidate repeats using current massively parallel sequencing technologies has been developed to avoid complicated multiple experiments, these methods are generally expensive. This study developed a cost-effective SCA repeat panel [Flongle SCA repeat panel sequencing (FLO-SCAp)] using Cas9-mediated targeted long-read sequencing and the smallest long-read sequencing apparatus, Flongle. This panel enabled the detection of repeat copy number changes, internal repeat sequences, and DNA methylation in seven patients with different repeat expansion diseases. The median (interquartile range) values of coverage and on-target rate were 39.5 (12 to 72) and 11.6% (7.5% to 16.5%), respectively. This approach was validated by comparing repeat copy number changes measured by FLO-SCAp and short-read whole-genome sequencing. A high correlation was observed between FLO-SCAp and short-read whole-genome sequencing when the repeat length was ≤250 bp (r = 0.98; P < 0.001). Thus, FLO-SCAp represents the most cost-effective method for conducting multiplex testing of repeats and can serve as the first-line diagnostic tool for SCA.


Subject(s)
CRISPR-Cas Systems , Spinocerebellar Ataxias , Humans , Cost-Benefit Analysis , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Microsatellite Repeats/genetics , Whole Genome Sequencing , High-Throughput Nucleotide Sequencing
15.
Sci Adv ; 10(4): eadj5279, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38266094

ABSTRACT

In neurological and neuropsychiatric diseases, different brain regions are affected, and differences in gene expression patterns could potentially explain this mechanism. However, limited studies have precisely explored gene expression in different regions of the human brain. In this study, we performed long-read RNA sequencing on three different brain regions of the same individuals: the cerebellum, hypothalamus, and temporal cortex. Despite stringent filtering criteria excluding isoforms predicted to be artifacts, over half of the isoforms expressed in multiple samples across multiple regions were found to be unregistered in the GENCODE reference. We then especially focused on genes with different major isoforms in each brain region, even with similar overall expression levels, and identified that many of such genes including GAS7 might have distinct roles in dendritic spine and neuronal formation in each region. We also found that DNA methylation might, in part, drive different isoform expressions in different regions. These findings highlight the significance of analyzing isoforms expressed in disease-relevant sites.


Subject(s)
Brain , Transcriptome , Humans , Cerebellum , Sequence Analysis, RNA , Protein Isoforms/genetics
16.
Front Immunol ; 15: 1398935, 2024.
Article in English | MEDLINE | ID: mdl-38807600

ABSTRACT

Leukocyte immunoglobulin (Ig)-like receptors (LILRs) on human chromosome 19q13.4 encode 11 immunoglobulin superfamily receptors, exhibiting genetic diversity within and between human populations. Among the LILR genes, the genomic region surrounding LILRB3 and LILRA6 has yet to be fully characterized due to their significant sequence homology, which makes it difficult to differentiate between them. To examine the LILRB3 and LILRA6 genomic region, a tool named JoGo-LILR CN Caller, which can call copy number from short-read whole genome sequencing (srWGS) data, was applied to an extensive international srWGS dataset comprising 2,504 samples. During this process, a previously unreported loss of both LILRB3 and LILRA6 was detected in three samples. Using long-read sequencing of these samples, we have discovered a novel large deletion (33,692 bp) in the LILRB3 and LILRA6 genomic regions in the Japanese population. This deletion spanned three genes, LILRB3, LILRA6, and LILRB5, resulting in LILRB3 exons 12-13 being located immediately downstream of LILRB5 exons 1-12 with the loss of LILRA6, suggesting the potential expression of a hybrid gene between LILRB5 and LILRB3 (LILRB5-3). Transcription and subsequent translation of the LILRB5-3 hybrid gene were also verified. The hybrid junction was located within the intracellular domain, resulting in an LILRB5 extracellular domain fused to a partial LILRB3 intracellular domain with three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), suggesting that LILRB5-3 acquired a novel signaling function. Further application of the JoGo-LILR tool to srWGS samples suggested the presence of the LILRB5-3 hybrid gene in the CEU population. Our findings provide insight into the genetic and functional diversity of the LILR family.


Subject(s)
Receptors, Immunologic , Signal Transduction , Humans , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/genetics , Whole Genome Sequencing , DNA Copy Number Variations , Antigens, CD
17.
Neurol Genet ; 10(1): e200108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38716326

ABSTRACT

Objectives: Distinguishing human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy from hereditary spastic paraplegia in patients infected with HTLV-1 is challenging due to overlapping clinical symptoms. The aim of this study was to explore the possibility that hereditary spastic paraplegia is inherently present in patients diagnosed with HTLV-1-associated myelopathy. Methods: We performed whole-genome sequencing on 315 unrelated patients registered in the HTLV-1-Associated Myelopathy patient registry "HAM-net," from 2013 to 2022 in Japan. CSF inflammatory biomarkers, including CXCL10, were measured. Results: We identified 5 patients with pathogenic variants in the genes RTN2, SPAST, VCP, and UBAP1, which are the known causes of hereditary spastic paraplegia. These patients had no family history of hereditary spastic paraplegia. The levels of CSF inflammatory biomarkers were lower than expected in these patients, compared with disease severity. Discussion: Genetic analysis is useful for the differentiation of hereditary spastic paraplegia patients from HTLV-1-associated myelopathy patients, especially for the patients with low levels of CSF inflammatory markers. Here we report the presence of hereditary spinal cord diseases in patients diagnosed with HTLV-1-associated myelopathy and provides evidence that genetic analysis would be helpful in the diagnostic workflow.

18.
J Biol Chem ; 287(19): 15570-9, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22411996

ABSTRACT

Staphylococcus aureus spreads on the surface of soft agar, a phenomenon we termed "colony spreading." Here, we found that S. aureus culture supernatant inhibited colony spreading. We purified δ-hemolysin (Hld, δ-toxin), a major protein secreted from S. aureus, as a compound that inhibits colony spreading. The culture supernatants of hld-disrupted mutants had 30-fold lower colony-spreading inhibitory activity than those of the parent strain. Furthermore, hld-disrupted mutants had higher colony-spreading ability than the parent strain. These results suggest that S. aureus negatively regulates colony spreading by secreting δ-hemolysin.


Subject(s)
Bacterial Proteins/metabolism , Hemolysin Proteins/metabolism , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Dose-Response Relationship, Drug , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Microbial Viability/drug effects , Microbial Viability/genetics , Molecular Sequence Data , Mutation , Staphylococcus aureus/genetics , Time Factors
19.
PLoS Pathog ; 7(2): e1001267, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21304931

ABSTRACT

The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus.


Subject(s)
Interspersed Repetitive Sequences/physiology , Perforin/genetics , Perforin/metabolism , Staphylococcus aureus/pathogenicity , Animals , Base Sequence , Female , Interspersed Repetitive Sequences/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Models, Biological , Molecular Sequence Data , Open Reading Frames/genetics , Organisms, Genetically Modified , Perforin/physiology , Protein Biosynthesis/physiology , Staphylococcus aureus/genetics , Transcription, Genetic/physiology , Transformation, Bacterial/physiology , Virulence/genetics
20.
Clin Pediatr Endocrinol ; 32(3): 161-167, 2023.
Article in English | MEDLINE | ID: mdl-37362161

ABSTRACT

Hyperphosphatemic familial tumoral calcinosis (HFTC) is a rare, inherited autosomal recessive disorder caused by fibroblast growth factor-23 (FGF23), N-acetylgalactosaminyltransferase 3 (GALNT3), or Klotho (KL) gene variants. Here, we report the case of a Japanese boy who presented with a mass in his left elbow at the age of three. Laboratory test results of the patient revealed normocalcemia (10.3 mg/dL) and hyperphosphatemia (8.7 mg/dL); however, despite hyperphosphatemia, serum intact FGF23 level was low, renal tubular reabsorption of phosphate (TRP) level was inappropriately increased, and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) level was inappropriately normal. Genetic analysis revealed maternal uniparental disomy (UPD) of chromosome 2, which included a novel GALNT3 variant (c.1780-1G>C). Reverse transcription-polymerase chain reaction (RT-PCR) analysis of GALNT3 mRNA confirmed that this variant resulted in the destruction of exon 11. We resected the mass when the patient was five years old, owing to its gradual enlargement. No relapse or new pathological lesions were observed four years after tumor resection. This is the first case report of a Japanese patient with HFTC associated with a novel GALNT3 variant, as well as the first case of HFTC caused by maternal UPD of chromosome 2 that includes the GALNT3 variant.

SELECTION OF CITATIONS
SEARCH DETAIL