Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Diabetes Obes Metab ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812281

ABSTRACT

AIM: Fatty acid esters of hydroxy fatty acids (FAHFA) are a class of bioactive lipids with anti-inflammatory, antidiabetic and cardioprotective properties. FAHFA hydrolysis into its fatty acid (FA) and hydroxy fatty acid (HFA) constituents can affect the bioavailability of FAHFA and its subsequent biological effects. We aimed to investigate FAHFA levels and FAHFA hydrolysis activity in children with or without obesity, and in adults with or without coronary artery disease (CAD). MATERIALS AND METHODS: Our study cohort included 20 children without obesity, 40 children with obesity, 10 adults without CAD and 28 adults with CAD. We quantitated plasma levels of four families of FAHFA [palmitic acid hydroxy stearic acid (PAHSA), palmitoleic acid hydroxy stearic acid (POHSA), oleic acid hydroxy stearic acid (OAHSA), stearic acid hydroxy stearic acid] and their corresponding FA and HFA constituents using liquid chromatography-tandem mass spectrometry analysis. Surrogate FAHFA hydrolysis activity was estimated as the FA/FAHFA or HFA/FAHFA ratio. RESULTS: Children with obesity had lower plasma PAHSA (p = .001), OAHSA (p = .006) and total FAHFA (p = .011) levels, and higher surrogate FAHFA hydrolysis activity represented by PA/PAHSA (p = .040) and HSA/OAHSA (p = .025) compared with children without obesity. Adults with CAD and a history of myocardial infarction (MI) had lower POHSA levels (p = .026) and higher PA/PAHSA (p = .041), POA/POHSA (p = .003) and HSA/POHSA (p = .038) compared with those without MI. CONCLUSION: Altered FAHFA metabolism is associated with obesity and MI, and inhibition of FAHFA hydrolysis should be studied further as a possible therapeutic strategy in obesity and MI.

2.
J Mol Med (Berl) ; 100(2): 185-196, 2022 02.
Article in English | MEDLINE | ID: mdl-34797389

ABSTRACT

The first genome-wide association study on coronary artery disease (CAD) in the Han Chinese population identified C6orf105 as a susceptibility gene. The C6orf105 gene was later found to encode for a protein that regulates tissue factor pathway inhibitor (TFPI) expression in endothelial cells in an androgen-dependent manner, and the novel protein was thus termed androgen-dependent TFPI-regulating protein (ADTRP). Since the identification of ADTRP, there have been several studies associating genetic variants on the ADTRP gene with CAD risk, as well as research providing mechanistic insights on this novel protein and its functional role. ADTRP is a membrane protein, whose expression is upregulated by androgen, GATA-binding protein 2, oxidized low-density lipoprotein, peroxisome proliferator-activated receptors, and low-density lipoprotein receptors. ADTRP regulates multiple downstream targets involved in coagulation, inflammation, endothelial function, and vascular integrity. In addition, ADTRP functions as a fatty acid esters of hydroxy fatty acid (FAHFA)-specific hydrolase that is involved in energy metabolism. Current evidence suggests that ADTRP may play a role in the pathogenesis of atherosclerosis, CAD, obesity, and metabolic disorders. This review summarizes the current literature on ADTRP, with a focus on the peripheral actions of ADTRP, including expression, genetic variations, signaling pathways, and function. The evidence linking ADTRP and cardiometabolic diseases will also be discussed.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Membrane Proteins , Obesity , Animals , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Genetic Variation , Humans , Hydrolases/genetics , Hydrolases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Obesity/genetics , Obesity/metabolism
3.
Microbiol Spectr ; 10(5): e0095722, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36066252

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global public health threat. In this study, we employed whole-genome sequencing (WGS) to determine the genomic epidemiology of a longitudinal collection of clinical CRKP isolates recovered from a large public acute care hospital in Singapore. Phylogenetic analyses, a characterization of resistance and virulence determinants, and plasmid profiling were performed for 575 unique CRKP isolates collected between 2009 and 2020. The phylogenetic analyses identified the presence of global high-risk clones among the CRKP population (clonal group [CG] 14/15, CG17/20, CG147, CG258, and sequence type [ST] 231), and these clones constituted 50% of the isolates. Carbapenemase production was common (n = 497, 86.4%), and KPC was the predominant carbapenemase (n = 235, 40.9%), followed by OXA-48-like (n = 128, 22.3%) and NDM (n = 93, 16.2%). Hypervirulence was detected in 59 (10.3%) isolates and was most common in the ST231 carbapenemase-producing isolates (21/59, 35.6%). Carbapenemase genes were associated with diverse plasmid replicons; however, there was an association of blaOXA-181/232 with ColKP3 plasmids. This study presents the complex and diverse epidemiology of the CRKP strains circulating in Singapore. Our study highlights the utility of WGS-based genomic surveillance in tracking the population dynamics of CRKP. IMPORTANCE In this study, we characterized carbapenem-resistant Klebsiella pneumoniae clinical isolates collected over a 12-year period in the largest public acute-care hospital in Singapore using whole-genome sequencing. The results of this study demonstrate significant genomic diversity with the presence of well-known epidemic, multidrug-resistant clones amid a diverse pool of nonepidemic lineages. Genomic surveillance involving comprehensive resistance, virulence, and plasmid gene content profiling provided critical information for antimicrobial resistance monitoring and highlighted future surveillance priorities, such as the emergence of ST231 K. pneumoniae strains bearing multidrug resistance, virulence elements, and the potential plasmid-mediated transmission of the blaOXA-48-like gene. The findings here also reinforce the necessity of unique infection control and prevention strategies that take the genomic diversity of local circulating strains into consideration.


Subject(s)
Anti-Infective Agents , Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Phylogeny , Public Health , Singapore/epidemiology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , beta-Lactamases/genetics , Plasmids/genetics , Genomics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Hospitals , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
4.
PLoS One ; 15(8): e0237074, 2020.
Article in English | MEDLINE | ID: mdl-32790694

ABSTRACT

Androgen dependent tissue factor pathway inhibitor regulating protein (ADTRP) is a novel protein associated with coronary artery disease (CAD) susceptibility, and reduced mRNA expression of ADTRP was shown to be associated with increased CAD risk. This study aimed to determine and compare circulating ADTRP levels between CAD patients and controls, and to test the performance of plasma ADTRP as a biomarker for CAD. We measured plasma ADTRP, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and high sensitivity-C reactive protein (hs-CRP) levels in 362 CAD patients, 150 angiographically negative CAD controls, and 83 healthy adults with no known clinical or medical conditions using commercial ELISA. Statistical analyses were performed using receiver operator characteristic (ROC) curves, quantile regression and logistic regression, with adjustments for age, gender, ethnicity and BMI. CAD patients had significantly lower plasma ADTRP levels 1,545 (1,087-2,408) pg/ml as compared to CAD controls 2,259 (1,533-3,778) pg/ml and healthy adults 3,904 (2,732-5,463) pg/ml. Plasma ADTRP outperformed the other three inflammatory biomarkers (TNF-α, IL-6 and hs-CRP) for CAD (Area under ROC curve: 0.67, Odds ratio (OR): 0.907). Our study has shown for the first time that ADTRP is present in circulation, and that plasma ADTRP may be a novel independent biomarker for CAD.


Subject(s)
Coronary Artery Disease/blood , Membrane Proteins/blood , Adult , Aged , Biomarkers/blood , C-Reactive Protein/metabolism , Case-Control Studies , Female , Humans , Inflammation Mediators/blood , Interleukin-6/blood , Logistic Models , Male , Middle Aged , Multivariate Analysis , Risk Factors , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL