ABSTRACT
Low-molecular-weight organic acid (OA) extrusion by plant roots is critical for plant nutrition, tolerance to cations toxicity, and plant-microbe interactions. Therefore, methodologies for the rapid and precise quantification of OAs are necessary to be incorporated in the analysis of roots and their exudates. The spatial location of root exudates is also important to understand the molecular mechanisms directing OA production and release into the rhizosphere. Here, we report the development of two complementary methodologies for OA determination, which were employed to evaluate the effect of inorganic ortho-phosphate (Pi) deficiency and aluminum toxicity on OA excretion by Arabidopsis roots. OA exudation by roots is considered a core response to different types of abiotic stress and for the interaction of roots with soil microbes, and for decades has been a target trait to produce plant varieties with increased capacities of Pi uptake and Al tolerance. Using targeted ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), we achieved the quantification of six OAs in root exudates at sub-micromolar detection limits with an analysis time of less than 5 min per sample. We also employed targeted (MS/MS) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to detect the spatial location of citric and malic acid with high specificity in roots and exudates. Using these methods, we studied OA exudation in response to Al toxicity and Pi deficiency in Arabidopsis seedlings overexpressing genes involved in OA excretion. Finally, we show the transferability of the MALDI-MSI method by analyzing OA excretion in Marchantia polymorpha gemmalings subjected to Pi deficiency.
Subject(s)
Acids/chemistry , Aluminum/toxicity , Phosphorus/administration & dosage , Plant Exudates/chemistry , Plant Roots/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Arabidopsis/chemistry , Arabidopsis/drug effects , Arabidopsis/metabolism , Gene Expression Regulation, Plant/drug effects , Marchantia/chemistry , Marchantia/drug effects , Marchantia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically ModifiedABSTRACT
MAIN CONCLUSION: Increased resistance to insect herbivory in grain amaranth plants is associated with increased betalain pigmentation, either naturally acquired or accumulated in response to blue-red light irradiation. Betalains are water-soluble pigments characteristic of plants of the Caryophyllales order. Their abiotic stress-induced accumulation is believed to protect against oxidative damage, while their defensive function against biotic aggressors is scarce. A previous observation of induced betalain-biosynthetic gene expression in stressed grain amaranth plants led to the proposal that these pigments play a defensive role against insect herbivory. This study provided further support for this premise. First, a comparison of "green" and "red" Amaranthus cruentus phenotypes showed that the latter suffered less insect herbivory damage. Coincidentally, growth and vitality of Manduca sexta larvae were more severely affected when fed on red-leafed A. cruentus plants or on an artificial diet supplemented with red-leaf pigment extracts. Second, the exposure of A. cruentus and A. caudatus plants, having contrasting pigmentation phenotypes, to light enriched in the blue and red wavelength spectra led to pigment accumulation throughout the plant and to increased resistance to insect herbivory. These events were accompanied by the induced expression of known betalain-biosynthetic genes, including uncharacterized DODA genes believed to participate in this biosynthetic pathway in a still undefined way. Finally, transient co-expression of different combinations of betalain-biosynthetic genes in Nicotiana benthamiana led to detectable accumulation of betalamic acid and betanidin. This outcome supported the participation of certain AhDODA and other genes in the grain amaranth betalain-biosynthetic pathway.
Subject(s)
Caryophyllales , Herbivory , Animals , Insecta , Pigmentation , NicotianaABSTRACT
BACKGROUND: Rhus trilobata Nutt. (Anacardiaceae) (RHTR) is a plant of Mexico that is traditionally used as an alternative treatment for several types of cancer. However, the phytochemical composition and potential toxicity of this plant have not been evaluated to support its therapeutic use. Therefore, this study aimed to evaluate the biological activity of RHTR against colorectal adenocarcinoma cells, determine its possible acute toxicity, and analyze its phytochemical composition. METHODS: The traditional preparation was performed by decoction of stems in distilled water (aqueous extract, AE), and flavonoids were concentrated with C18-cartridges and ethyl acetate (flavonoid fraction, FF). The biological activity was evaluated by MTT viability curves and the TUNEL assay in colorectal adenocarcinoma (CACO-2), ovarian epithelium (CHO-K1) and lung/bronchus epithelium (BEAS-2B) cells. The toxicological effect was determined in female BALB/c mice after 24 h and 14 days of intraperitoneal administration of 200 mg/kg AE and FF, respectively. Later, the animals were sacrificed for histopathological observation of organs and sera obtained by retro-orbital bleeding for biochemical marker analysis. Finally, the phytochemical characterization of AE and FF was conducted by UPLC-MSE. RESULTS: In the MTT assays, AE and FF at 5 and 18 µg/mL decreased the viability of CACO-2 cells compared with cells treated with vehicle or normal cells (p ≤ 0.05, ANOVA), with changes in cell morphology and the induction of apoptosis. Anatomical and histological analysis of organs did not reveal important pathological lesions at the time of assessment. Additionally, biochemical markers remained normal and showed no differences from those of the control group after 24 h and 14 days of treatment (p ≤ 0.05, ANOVA). Finally, UPLC-MSE analysis revealed 173 compounds in AE-RHTR, primarily flavonoids, fatty acids and phenolic acids. The most abundant compounds in AE and FF were quercetin and myricetin derivates (glycosides), methyl gallate, epigallocatechin-3-cinnamate, ß-PGG, fisetin and margaric acid, which might be related to the anticancer properties of RHTR. CONCLUSION: RHTR exhibits biological activity against cancer cells and does not present adverse toxicological effects during its in vivo administration, supporting its traditional use.
Subject(s)
Antineoplastic Agents, Phytogenic/analysis , Rhus/chemistry , Animals , Antioxidants/analysis , CHO Cells , Caco-2 Cells , Cricetulus , Drug Screening Assays, Antitumor , Female , Flavonoids/analysis , Humans , Medicine, Traditional , Mexico , Mice, Inbred BALB C , Phytotherapy , Plant Extracts/analysis , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Polyphenols/analysis , Rhus/toxicityABSTRACT
BACKGROUND: In contrast to commercial Diospyros species, Mesoamerican fruit-producing species are scarcely known, particularly wild species that might harbor desirable traits suitable for breeding. Thus, metabolomic, chemical, and antioxidant profiles of fruits harvested from cultivated Diospyros digyna and wild Diospyros rekoi trees during consecutive winter seasons were obtained. Fruits were harvested in habitats having marked differences in soil quality, climate, and luminosity. RESULTS: D. digyna fruits were larger and less acid than D. rekoi fruits, whereas antioxidant activity tended to be higher in D. rekoi fruits. Phenolic, flavonoid, and sugar contents also varied significantly between species. Metabolomic analysis allowed the pre-identification of 519 and 1665 metabolites in negative and positive electrospray ionization (ESI) modes, respectively. Principal component analysis of the positive ESI data explained 51.8% of the variance and indicated clear metabolomic differences between D. rekoi and D. digyna fruits that were confirmed by direct-injection ESI mass spectrometry profiles. Twenty-one discriminating metabolites were detected in fruits of both species; D. digyna fruits differentially accumulated lysophospholipids, whereas discriminating metabolites in D. rekoi fruits were chemically more diverse than those in D. digyna fruits. CONCLUSION: Domesticated D. digyna fruits have improved physicochemical fruit traits compared with wild D. rekoi fruits, including larger size and lower acidity. The metabolomic and chemical composition of their respective fruits were also significantly different, which in D. rekoi was manifested as a notable season-dependent increase in antioxidant capacity. Therefore, wild D. rekoi can be considered as an important genetic resource for the improvement of commercial Diospyros fruit quality. © 2019 Society of Chemical Industry.
Subject(s)
Antioxidants/analysis , Diospyros/chemistry , Antioxidants/metabolism , Climate , Diospyros/metabolism , Ecosystem , Fruit/chemistry , Fruit/metabolism , Phenotype , Seasons , Soil/chemistryABSTRACT
MAIN CONCLUSION: The method introduced here to grow F. hygrometrica in high concentrations of D 2 O is an excellent alternative to produce highly deuterated metabolites with broad applications in metabolic studies. Our mass spectrometry experiments strongly indicate the successful incorporation of deuterium into organic compounds. Deuterated metabolites are useful tracers for metabolic studies, yet their wide utilization in research is limited by the multi-step total synthesis required to produce them in the laboratory. Alternatively, deuterated metabolites can be obtained from organisms grown in D2O or deuterated nutrients. This approach also has limitations as D2O in high concentrations negatively affects the survival of most organisms. Here we report the moss Funaria hygrometrica as an unusual high tolerant to D2O in liquid culture. We found that this moss is able to grow in up to 90% D2O, a condition lethal for many eukaryotes. Mass spectrometric analyses of F. hygrometrica extracts showed a strong deuteration pattern. The ability to tolerate high concentrations of D2O together with the development of a rich molecular toolbox makes F. hygrometrica an ideal system for the production of valuable deuterated metabolites.
Subject(s)
Bryopsida/metabolism , Deuterium Oxide/metabolism , Deuterium/metabolism , Drug Tolerance , Mass SpectrometryABSTRACT
The European gooseberry (Ribes uva-crispa) is still an understudied crop with limited data available on its biochemical profile and postharvest life. A variety of polyphenols were detected in the skin and flesh of 20 gooseberry cvs, representing mainly flavonol glycosides, anthocyanins and flavan-3-ols. In contrast, gooseberry seeds were for the first time characterised by the presence of considerable amounts of hydroxycinnamic acid glycosides tentatively identified by UPLC-QToF/MS. All cvs examined represented a good source of vitamin C while being low in sugar. Furthermore, the postharvest stability of bioactives was explored by supplementation of exogenous ethylene in air at 5 °C. Results suggest a low sensitivity of gooseberries to ethylene. The overall quality of gooseberries remained stable over two weeks, showing potential for extended bioactive life.
ABSTRACT
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.
Subject(s)
Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Agave/anatomy & histology , Agave/drug effects , Agave/genetics , Agave/metabolism , Arabidopsis/genetics , Biological Transport/drug effects , DNA, Complementary/genetics , Flowers/drug effects , Flowers/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Indoleacetic Acids/pharmacology , Models, Biological , Molecular Sequence Data , Phylogeny , Plants, Genetically Modified , Real-Time Polymerase Chain ReactionABSTRACT
Chronic noncommunicable diseases (NCDs) are responsible for approximately 74% of deaths globally. Medicinal plants have traditionally been used to treat NCDs, including diabetes, cancer, and rheumatic diseases, and are a source of anti-inflammatory compounds. This study aimed to evaluate the anti-inflammatory effects of Rhus trilobata (Rt) extracts and fractions in lipopolysaccharide (LPS)-induced inflammation models in vitro and in vivo. The aqueous extract (RtAE) and five fractions (F2 to F6) were obtained via C18 solid-phase separation and tested in murine LPS-induced J774.1 macrophages. Key inflammatory markers, such as IL-1ß, IL-6, TNF-α, and COX-2 gene expression were measured using RT-qPCR, and PGE2 production was assessed via HPLC-DAD. The in vivo effects were tested in an LPS-induced paw edema model in Wistar rats. Results showed that RtAE at 15 µg/mL significantly decreased IL-1ß and IL-6 gene expression in vitro. Fraction F6 further reduced IL-1ß, TNF-α, and IL-6 gene expression, COX-2 expression, and PGE2 production. In vivo, F6 significantly reduced LPS-induced paw edema, inflammatory infiltration, and IL-1ß and COX-2 protein expression. Chemical characterization of F6 by UPLC/MS-QTOF revealed at least eight compounds with anti-inflammatory activity. These findings support the anti-inflammatory potential of RtAE and F6, reinforcing the medicinal use of Rt.
ABSTRACT
Vanillin is the main component of vanilla flavor and is naturally produced from an orchid. However, due to the high cost and time-intensive nature of cultivating natural vanilla pods, most of the vanillin is mainly artificially manufactured. Existing methodologies, such as isotope ratio mass spectrometry (IRMS) and site-specific natural isotopic fractionation by nuclear magnetic resonance (SNIF-NMR), are employed to differentiate natural vanillin from other sources based on carbon and hydrogen isotope measurements. Nevertheless, these methods have limitations, as the carbon isotopic ratio can be counterfeited by adding commercially available enriched vanillin. For this research, we purified 1 mg of vanillin from pods from various geographical and botanical sources. We developed a novel method for analyzing 13C/12C and 18O/16O isotopic ratios of vanillin using direct injection analysis coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This innovative approach enables the examination of bulk vanillin carbon and oxygen isotopic ratios, as well as specific molecular fragments. By analyzing a characteristic vanillin fragment that provides site-specific 18O/16O isotopic ratio data, we achieved superior clustering and discrimination of samples based on their botanical source and geographical origin. Our proposed method holds significant potential for vanillin authentication and can be performed using a mere 20 µg of pure vanillin in just 10 min of analysis time. Subsequent research should focus on acquiring additional vanillin samples from diverse botanical, geographical, and biosynthetic origins while exploring various isotopic ratios to further enhance the reproducibility and reliability of this methodology.
Subject(s)
Carbon , Oxygen Isotopes , Reproducibility of Results , Carbon Isotopes/chemistryABSTRACT
Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package "Salsa" (version 1.0).
ABSTRACT
BACKGROUND: Metabolic reconfiguration in plants is a hallmark response to insect herbivory that occurs in the attack site and systemically in undamaged tissues. Metabolomic systemic responses can occur rapidly while the herbivore is still present and may persist in newly developed tissue to counterattack future herbivore attacks. This study analyzed the metabolic profile of local and newly developed distal (systemic) leaves of husk tomato (Physalis philadelphica) plants after whitefly Trialeurodes vaporariorum infestation. In addition, the effect of these metabolomic adjustments on whitefly oviposition and development was evaluated. RESULTS: Our results indicate that T. vaporariorum infestation induced significant changes in husk tomato metabolic profiles, not only locally in infested leaves, but also systemically in distal leaves that developed after infestation. The distinctive metabolic profile produced in newly developed leaves affected whitefly nymphal development but did not affect female oviposition, suggesting that changes driven by whitefly herbivory persist in the young leaves that developed after the infestation event to avoid future herbivore attacks. CONCLUSIONS: This report contributes to further understanding the plant responses to sucking insects by describing the metabolic reconfiguration in newly developed, undamaged systemic leaf tissues of husk tomato plants after whitefly infestation. © 2022 Society of Chemical Industry.
Subject(s)
Hemiptera , Physalis , Animals , Metabolomics , Plant LeavesABSTRACT
Capsicum spp. members are a rich source of specialized compounds due to their secondary metabolism. Some metabolic pathways have suffered modifications during the domestication process and improvement of agricultural traits. Here, we compared non-targeted LC-MS profiles from several areas: wild accessions (C. annuum L. var. glabriusculum), domesticated cultivars (C. annuum L.), and the F1 progeny of a domesticated, and a wild accession cross (in both directions) throughout seven stages of fruit development of chili pepper fruits. The main detected differences were in glycerophospholipid metabolism, flavone and flavonol biosynthesis, sphingolipid metabolism, and cutin biosynthesis. The domesticated group exhibited a higher abundance in 12'-apo-ß-carotenal, among others capsorubin, and ß-tocopherol. Palmitic acid and derivates, terpenoids, and quercitrin were prevalent in the wild accessions. F1 progeny showed a higher abundance of capsaicin, glycol stearate, and soyacerebroside I. This work supports evidence of the side-affectation of trait selection over the metabolism of chili pepper fruit development. Furthermore, it was also observed that there was a possible heterosis effect over the secondary metabolism in the F1 progeny.
ABSTRACT
In the present study, a water-soluble neutral polysaccharide (CAPW-1) with an average molecular weight of 64 kDa was purified from the root of Cynanchum atratum Bunge (Apocynaceae). The monosaccharide residue analysis revealed that CAPW-1 was composed of arabinose and galactose with a relative molar ratio of 7: 3. The backbone of CAPW-1 was consisted of 1,3-Galp and 1,3,6-Galp, the branches were attached to the O-6 of 1,3-Galp, and the side chains contained 1,6-Galp, 1,3,6-Galp, 1,5-linked, 1,3-linked, 1,3,5-linked, and terminal-Araf, which was attached to the O-3 of side 1,6-Galp. The bioactivity study indicated CAPW-1 could stimulate the proliferation of RAW264.7 cells and promote the secretion of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) with no cytotoxicity. The results suggested a potential application of CAPW-1 as an immunostimulant for the treatment of diseases such as infection and tumor.
Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Galactans/chemistry , Galactans/pharmacology , Vincetoxicum/chemistry , Animals , Biomarkers , Chemical Phenomena , Galactans/isolation & purification , Humans , Hydrolysis , Immunomodulation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Molecular Structure , Molecular Weight , Monosaccharides/chemistry , RAW 264.7 Cells , Spectrum AnalysisABSTRACT
In dual culture confrontation assays, basidiomycete Irpex lacteus efficiently antagonized Fusarium spp., Colletotrichum spp., and Phytophthora spp. phytopathogenic strains, with growth inhibition percentages between 16.7-46.3%. Antibiosis assays evaluating the inhibitory effect of soluble extracellular metabolites indicated I. lacteus strain inhibited phytopathogens growth between 32.0-86.7%. Metabolites in the extracellular broth filtrate, identified by UPLC-QTOF mass spectrometer, included nine terpenes, two aldehydes, and derivatives of a polyketide, a quinazoline, and a xanthone, several of which had antifungal activity. I. lacteus strain and its extracellular metabolites might be valuable tools for phytopathogenic fungi and oomycete biocontrol of agricultural relevance.
Subject(s)
Antifungal Agents/pharmacology , Fusarium/drug effects , Oomycetes/drug effects , Phytophthora/drug effects , Plant Diseases/microbiology , Polyporales/chemistry , Aldehydes/chemistry , Aldehydes/metabolism , Aldehydes/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Fusarium/growth & development , Mass Spectrometry , Oomycetes/growth & development , Phytophthora/growth & development , Polyporales/metabolism , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Terpenes/chemistry , Terpenes/metabolism , Terpenes/pharmacologyABSTRACT
Inhibition of glucose uptake in the intestine through sodium-dependent glucose transporter 1 (SGLT1) or glucose transporter 2 (GLUT2) may be beneficial in controlling postprandial blood glucose levels. Gallic acid and ten of its derivatives were identified in the active fractions of Terminalia chebula Retz. fructus immaturus, a popular edible plant fruit which has previously been associated with the inhibition of glucose uptake. Gallic acid derivatives (methyl gallate, ethyl gallate, pentyl gallate, 3,4,6-tri-O-galloyl-ß-d-glucose, and corilagin) showed good glucose transport inhibition with inhibitory rates of 72.1 ± 1.6%, 71.5 ± 1.4%, 79.9 ± 1.2%, 44.7 ± 1.2%, and 75.0 ± 0.7% at 5 mM d-glucose and/or 56.3 ± 2.3, 52.1 ± 3.2%, 70.2 ± 1.7%, 15.6 ± 1.6%, and 37.1 ± 0.8% at 25 mM d-glucose. However, only 3,4,6-tri-O-galloyl-ß-d-glucose and corilagin were confirmed GLUT2-specific inhibitors. Whilst some tea flavonoids demonstrated minimal glucose transport inhibition, their gallic acid derivatives strongly inhibited transport effect with GLUT2 specificity. This suggests that gallic acid structures are crucial for glucose transport inhibition. Plants, such as T. chebula, which contain high levels of gallic acid and its derivatives, show promise as natural functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels.
Subject(s)
Biological Transport/drug effects , Gallic Acid/chemistry , Gallic Acid/pharmacology , Glucose/metabolism , Plant Extracts/pharmacology , Postprandial Period/drug effects , Caco-2 Cells , Flavonoids , Fruit/chemistry , Gallic Acid/analogs & derivatives , Glucose Transporter Type 2 , Glucosides , Humans , Hydrolyzable Tannins , Intestines , Sodium-Glucose Transporter 1 , Terminalia/drug effectsABSTRACT
The Physalis genus includes species of commercial importance due to their ornamental, edible and medicinal properties. These qualities stem from their variety of biologically active compounds. We performed a metabolomic analysis of three Physalis species, i.e., P. angulata, P. grisea, and P. philadelphica, differing in domestication stage and cultivation practices, to determine the degree of inter-species metabolite variation and to test the hypothesis that these related species mount a common metabolomic response to foliar damage caused by Trichoplusia ni larvae. The results indicated that the metabolomic differences detected in the leaves of these species were species-specific and remained even after T. ni herbivory. They also show that each Physalis species displayed a unique response to insect herbivory. This study highlighted the metabolite variation present in Physalis spp. and the persistence of this variability when faced with biotic stressors. Furthermore, it sets an experimental precedent from which highly species-specific metabolites could be identified and subsequently used for plant breeding programs designed to increase insect resistance in Physalis and related plant species.
Subject(s)
Physalis , Animals , Herbivory , Larva , Metabolomics , Plant LeavesABSTRACT
Rhus trilobata (RHTR) is a medicinal plant with cytotoxic activity in different cancer cell lines. However, the active compounds in this plant against ovarian cancer are unknown. In this study, we aimed to evaluate the antineoplastic activity of RHTR and identify its active metabolites against ovarian cancer. The aqueous extract (AE) and an active fraction (AF02) purified on C18-cartridges/ethyl acetate decreased the viability of SKOV-3 cells at 50 and 38 µg/mL, respectively, compared with CHO-K1 (>50 µg/mL) in MTT assays and generated changes in the cell morphology with apoptosis induction in Hemacolor® and TUNEL assays (p ≤ 0.05, ANOVA). The metabolite profile of AF02 showed a higher abundance of flavonoid and lipid compounds compared with AE by UPLC-MSE. Gallic acid and myricetin were the most active compounds in RHTR against SKOV-3 cells at 50 and 166 µg/mL, respectively (p ≤ 0.05, ANOVA). Antineoplastic studies in Nu/Nu female mice with subcutaneous SKOV-3 cells xenotransplant revealed that 200 mg/kg/i.p. of AE and AF02 inhibited ovarian tumor lesions from 37.6% to 49% after 28 days (p ≤ 0.05, ANOVA). In conclusion, RHTR has antineoplastic activity against ovarian cancer through a cytostatic effect related to gallic acid and myricetin. Therefore, RHTR could be a complementary treatment for this pathology.
ABSTRACT
Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.
Subject(s)
Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Metabolome , Transcription Factors/metabolism , Arabidopsis , Arabidopsis Proteins/genetics , Gene Expression Regulation, Developmental , Transcription Factors/genetics , TranscriptomeABSTRACT
Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and domestication. Here, we performed a time-course experiment to estimate standardized gene expression profiles with respect to fruit development for six domesticated and four wild chili pepper ancestors. We sampled the transcriptomes every 10 days from flowering to fruit maturity, and found that the mean standardized expression profiles for domesticated and wild accessions significantly differed. The mean standardized expression was higher and peaked earlier for domesticated vs. wild genotypes, particularly for genes involved in the cell cycle that ultimately control fruit size. We postulate that these gene expression changes are driven by selection pressures during domestication and show a robust network of cell cycle genes with a time shift in expression, which explains some of the differences between domesticated and wild phenotypes.
ABSTRACT
Methodology combining mass spectrometry imaging (MSI) with ion mobility separation (IMS) has emerged as a biological imaging technique due to its versatility, sensitivity and label-free approach. This technique has been shown to separate isomeric compounds such as lipids, amino acids, carboxylic acids and carbohydrates. This report describes mass spectrometry imaging in combination with traveling-wave ion mobility separation and matrix-assisted laser desorption/ionization (MALDI). Positive ionization mode was used to locate fructans on tissue printed sections of Agave rhizome and stem tissue and distinguished fructan isoforms. Here we show the location of fructans ranging from DP3 to DP17 to be differentially abundant across the stem tissue and for the first time, experimental collision cross sections of endogenous fructan structures have been collected, revealing at least two isoforms for fructans of DP4, DP5, DP6, DP7, DP8, DP10, and DP11. This demonstrates that complex fructans such as agavins can be located and their isoforms resolved using a combination of MALDI, IMS, and MSI, without the need for extraction or derivatization. Use of this methodology uncovered patterns of fructan localization consistent with functional differences where higher DP fructans are found toward the central section of the stem supporting a role in long term carbohydrate storage whereas lower DP fructans are concentrated in the highly vascularized central core of rhizomes supporting a role in mobilization of carbohydrates from the mother plant to developing offsets. Tissue specific patterns of expression of genes encoding enzymes involved in fructan metabolism are consistent with fructan structures and localization.