Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Stem Cells ; 42(1): 42-54, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37798139

ABSTRACT

Bone marrow microenvironmental stimuli profoundly impact hematopoietic stem cell fate and biology. As G protein-coupled receptors, the bitter taste receptors (TAS2Rs) are key in transmitting extracellular stimuli into an intracellular response, within the oral cavity but also in extraoral tissues. Their expression in the bone marrow (BM)-derived cells suggests their involvement in sensing the BM microenvironmental fluctuation. In the present study, we demonstrated that umbilical cord blood (UCB)-derived CD34+ cells express fully functional TAS2Rs along with the signal transduction cascade components and their activation by the prototypical agonist, denatonium benzoate, significantly modulated genes involved in stemness maintenance and regulation of cell trafficking. The activation of these specific pathways was confirmed in functional in vitro experiments. Denatonium exposure exerted an antiproliferative effect on UCB-derived CD34+ cells, mainly affecting the most undifferentiated progenitor frequency. It also reduced their clonogenicity and repopulating potential in vitro. In addition, the TAS2R signaling activation impaired the UCB-derived CD34+ cell trafficking, mainly reducing the migration toward the chemoattractant agent CXCL12 and modulating the expression of the adhesion molecules CD62L, CD49d, and CD29. In conclusion, our results in UCB-derived CD34+ cells expand the observation of TAS2R expression in the setting of BM-resident cells and shed light on the role of TAS2Rs in the extrinsic regulation of hematopoietic stem cell functions.


Subject(s)
Hematopoietic Stem Cells , Taste , Hematopoietic Stem Cells/metabolism , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Antigens, CD34/metabolism
2.
Haematologica ; 105(10): 2420-2431, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33054082

ABSTRACT

Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases , Pyrimidines
3.
Haematologica ; 104(4): 729-737, 2019 04.
Article in English | MEDLINE | ID: mdl-30381297

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5'-azacytidine and decitabine in controlling disease progression in vivo.


Subject(s)
Azacitidine/pharmacology , Decitabine/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms , Myeloproliferative Disorders , Neoplasm Proteins , Skin Neoplasms , Aged , Animals , Cell Line, Tumor , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Xenograft Model Antitumor Assays
4.
Br J Cancer ; 118(10): 1329-1336, 2018 05.
Article in English | MEDLINE | ID: mdl-29695766

ABSTRACT

BACKGROUND: Anti-PD-1 and anti-PD-L1 checkpoint inhibitors (CIs) are clinically active in many types of cancer. However, only a minority of patients achieve a complete and/or long-lasting clinical response. We studied the effects of different doses of three widely used, orally active chemotherapeutics (vinorelbine, cyclophosphamide and 5-FU) over local and metastatic tumour growth, and the landscape of circulating and tumour-infiltrating immune cells involved in CI activity. METHODS: Immunocompetent Balb/c mice were used to generate models of breast cancer (BC) and B-cell lymphoma. Vinorelbine, cyclophosphamide and 5-FU (alone or in combination with CIs), were given at low-dose metronomic, medium, or maximum tolerable dosages. RESULTS: Cyclophosphamide increased circulating myeloid derived suppressor cells (MDSC). Vinorelbine, cyclophosphamide and 5-FU reduced circulating APCs. Vinorelbine and cyclophosphamide (at medium/high doses) reduced circulating Tregs. Cyclophosphamide (at low doses) and 5-FU (at medium doses) slightly increased circulating Tregs. Cyclophosphamide was the most potent drug in reducing circulating CD3+CD8+ and CD3+CD4+ T cells. Vinorelbine, cyclophosphamide and 5-FU reduced the number of circulating B cells, with cyclophosphamide showing the most potent effect. Vinorelbine reduced circulating NKs, whereas cyclophosphamide and 5-FU, at low doses, increased circulating NKs. In spite of reduced circulating T, B and NK effector cells, preclinical synergy was observed between chemotherapeutics and anti-PD-L1. Most-effective combinatorial regimens where associated with neoplastic lesions enriched in B cells, and, in BC-bearing mice (but not in mice with lymphoma) also in NK cells. CONCLUSIONS: Vinorelbine, cyclophosphamide and 5-FU have significant preclinical effects on circulating and tumour-infiltrating immune cells and can be used to obtain synergy with anti-PD-L1.


Subject(s)
B7-H1 Antigen/genetics , Breast Neoplasms/drug therapy , Lymphoma/drug therapy , Programmed Cell Death 1 Receptor/genetics , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclophosphamide/administration & dosage , Fluorouracil/administration & dosage , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma/genetics , Lymphoma/immunology , Lymphoma/pathology , Mice , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Vinorelbine/administration & dosage , Xenograft Model Antitumor Assays
5.
Haematologica ; 103(1): 80-90, 2018 01.
Article in English | MEDLINE | ID: mdl-29025907

ABSTRACT

Genomic instability plays a pathological role in various malignancies, including acute myeloid leukemia (AML), and thus represents a potential therapeutic target. Recent studies demonstrate that SIRT6, a NAD+-dependent nuclear deacetylase, functions as genome-guardian by preserving DNA integrity in different tumor cells. Here, we demonstrate that also CD34+ blasts from AML patients show ongoing DNA damage and SIRT6 overexpression. Indeed, we identified a poor-prognostic subset of patients, with widespread instability, which relies on SIRT6 to compensate for DNA-replication stress. As a result, SIRT6 depletion compromises the ability of leukemia cells to repair DNA double-strand breaks that, in turn, increases their sensitivity to daunorubicin and Ara-C, both in vitro and in vivo In contrast, low SIRT6 levels observed in normal CD34+ hematopoietic progenitors explain their weaker sensitivity to genotoxic stress. Intriguingly, we have identified DNA-PKcs and CtIP deacetylation as crucial for SIRT6-mediated DNA repair. Together, our data suggest that inactivation of SIRT6 in leukemia cells leads to disruption of DNA-repair mechanisms, genomic instability and aggressive AML. This synthetic lethal approach, enhancing DNA damage while concomitantly blocking repair responses, provides the rationale for the clinical evaluation of SIRT6 modulators in the treatment of leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Damage/drug effects , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Sirtuins/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 2/metabolism , DNA Repair , Disease Models, Animal , Enzyme Activation , Gene Expression , Genomic Instability , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Protein Binding , Sirtuins/genetics
6.
Int J Cancer ; 136(6): E534-44, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25196138

ABSTRACT

The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence.


Subject(s)
Breast Neoplasms/drug therapy , Metformin/pharmacology , Neovascularization, Pathologic/prevention & control , Phenformin/pharmacology , Tumor Microenvironment , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Cell Line, Tumor , Electron Transport Complex I/antagonists & inhibitors , Female , Humans , Mice , Neoplasm Metastasis , Phosphorylation , TOR Serine-Threonine Kinases/metabolism
7.
Carcinogenesis ; 35(5): 1055-66, 2014 May.
Article in English | MEDLINE | ID: mdl-24419232

ABSTRACT

The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short-term enhancement of pro-angiogenic mediators, as well as with a differential regulation in endothelial and breast cancer cells.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Metformin/pharmacology , Neovascularization, Physiologic/drug effects , AMP-Activated Protein Kinases/metabolism , Adipose Tissue/cytology , Adipose Tissue/drug effects , Animals , Antineoplastic Agents/pharmacology , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Cluster Analysis , Cytochrome P-450 CYP1B1 , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Enzyme Activation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Vascular Endothelial Growth Factor A/pharmacology
8.
Curr Opin Oncol ; 26(6): 545-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25279961

ABSTRACT

PURPOSE OF REVIEW: There is emerging evidence that obesity is associated with an increase in the incidence, severity, and mortality from different types of cancer, including postmenopausal breast cancer. Here, we discuss the role of white adipose tissue (WAT) cells and of related soluble factors in the local and metastatic growth of this neoplastic disease. Moreover, we discuss the recent increase in the use of WAT-derived progenitor cells in breast cancer patients to enhance the quality of breast reconstruction and the related risks. RECENT FINDINGS: In several murine models, WAT cells and progenitors were found to have cooperative roles in promoting local breast cancer. Moreover, they were found to contribute to adipocytes and pericytes supporting the cancer vasculature, and stimulated the metastatic progression of breast cancer. There are some clinically retrospective data showing a significant increase in the frequency of intraepithelial neoplasia in patients who received a lipofilling procedure for breast reconstruction compared with controls. SUMMARY: Preclinical models and clinical studies are urgently needed to investigate how to inhibit the tumor-promoting activity of WAT cells and progenitors. The risks associated with the use of WAT cells for breast reconstructions should be better investigated retrospectively and prospectively.


Subject(s)
Adipose Tissue, White , Breast Neoplasms/etiology , Stem Cells , Animals , Breast Neoplasms/pathology , Female , Humans , Inflammation/metabolism , Obesity/complications , Risk Factors
9.
Nat Commun ; 15(1): 2567, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519469

ABSTRACT

Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Killer Cells, Natural , Smad3 Protein/genetics , Smad3 Protein/metabolism , Bromodomain Containing Proteins
10.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37956420

ABSTRACT

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Subject(s)
Leukemia, Promyelocytic, Acute , PPAR delta , Animals , Mice , Cathepsin G , Diet, High-Fat/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Obesity/complications , Oncogene Proteins, Fusion/genetics , PPAR delta/therapeutic use
11.
Cancer Lett ; 577: 216441, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37806515

ABSTRACT

Chemotherapeutic agents have profound effects on cancer, stroma and immune cells that - in most cases - depend upon the dosage and schedule of administration. Preclinical and clinical studies summarized and discussed in the present review have demonstrated that maximum tolerable dosage (MTD) vs low-dosage, continuous (metronomic) administration of most chemotherapeutics have polarized effects on immune cells. In particular, metronomic schedules might be associated - among others effects - with activation of antigen presenting cells and generation of new T cell clones to enhance the activity of several types of immunotherapies. Ongoing and planned clinical trials in different types of cancer will confirm or dismiss this hypothesis and provide candidate biomarker data for the selection of patients who are likely to benefit from these combinatorial strategies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , T-Lymphocytes , Neoplasms/drug therapy , Administration, Metronomic , Antigen-Presenting Cells
12.
J Clin Med ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048617

ABSTRACT

We have previously shown in triple-negative breast cancer (TNBC) models that a triple therapy (TT) including intermittent cyclophosphamide (C), vinorelbine (V), and anti-PD-1 activates antigen-presenting cells (APC) and generates stem like-T cells able to control local and metastatic tumor progression. In the present manuscript, we report the generation of a highly aggressive, anti-PD-1 resistant model of a high-grade, Myc-driven B-cell non-Hodgkin's lymphoma (NHL) that can be controlled in vivo by TT but not by other chemotherapeutic agents, including cytarabine (AraC), platinum (P), and doxorubicin (D). The immunological memory elicited in tumor-bearing mice by TT (but not by other treatments) can effectively control NHL re-challenge even at very high inoculum doses. TT re-shaped the landscape of circulating innate NK cells and adaptive immune cells, including B and T cells, and significantly reduced exhausted CD4+ and CD8+ TIM3+PD-1+ T cells in the spleens of treated mice.

13.
Cell Death Discov ; 8(1): 106, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35260564

ABSTRACT

Breast cancer (BC) constitutes a major health problem worldwide, making it the most common malignancy in women. Current treatment options for BC depend primarily on histological type, molecular markers, clinical aggressiveness and stage of disease. Immunotherapy, such as αPD-1, have shown combinatorial clinical activity with chemotherapy in triple negative breast cancer (TNBC) delineating some therapeutic combinations as more effective than others. However, a clear overview of the main immune cell populations involved in these treatments has never been provided.Here, an assessment of the immune landscape in the tumor microenvironment (TME) of two TNBC mouse models has been performed using single-cell RNA sequencing technology. Specifically, immune cells were evaluated in untreated conditions and after treatments with chemotherapy or immunotherapy used as single agents or in combination. A decrease of Treg was found in treatments with in vivo efficacy as well as γδ T cells, which have a pro-tumoral activity in mice. Focusing on Cd8 T cells, across all the conditions, a general increase of exhausted-like Cd8 T cells was confirmed in pre-clinical treatments with low efficacy and an opposite trend was found for the proliferative Cd8 T cells. Regarding macrophages, M2-like cells were enriched in treatments with low efficacy while M1-like macrophages followed an opposite trend. For both models, similar proportions of B cells were detected with an increase of proliferative B cells in treatments involving cisplatin in combination with αPD-1. The fine-scale characterization of the immune TME in this work can lead to new insights on the diagnosis and treatment of TNBC.

14.
Sci Rep ; 12(1): 1341, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079096

ABSTRACT

Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The anti-diabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention, although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1), a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of anti-apoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels, which favors cytotoxic lymphocytes binding to tumor cells. Finally, metformin decreases the growth of human hematological tumor cells in xenograft models, mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.


Subject(s)
Intercellular Adhesion Molecule-1/physiology , Metformin/pharmacology , Neoplasms/drug therapy , Animals , Humans , Killer Cells, Natural , Male , Mice , Mice, Inbred NOD , Tumor Cells, Cultured
15.
Sci Rep ; 12(1): 3234, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217717

ABSTRACT

Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.


Subject(s)
Antineoplastic Agents , Leukemia , Tumor Suppressor Protein p53 , Antineoplastic Agents/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukemia/immunology , Leukemia/metabolism , Ligands , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Tumor Suppressor Protein p53/immunology , Tumor Suppressor Protein p53/metabolism
16.
Leukemia ; 36(1): 197-209, 2022 01.
Article in English | MEDLINE | ID: mdl-34304248

ABSTRACT

Standard chemotherapies for diffuse large B-cell lymphoma (DLBCL), based on the induction of exogenous DNA damage and oxidative stress, are often less effective in the presence of increased MYC and BCL-2 levels, especially in the case of double hit (DH) lymphomas harboring rearrangements of the MYC and BCL-2 oncogenes, which enrich for a patient's population characterized by refractoriness to anthracycline-based chemotherapy. Here we hypothesized that adaptive mechanisms to MYC-induced replicative and oxidative stress, consisting in DNA damage response (DDR) activation and BCL-2 overexpression, could represent the biologic basis of the poor prognosis and chemoresistance observed in MYC/BCL-2-positive lymphoma. We first integrated targeted gene expression profiling (T-GEP), fluorescence in situ hybridization (FISH) analysis, and characterization of replicative and oxidative stress biomarkers in two independent DLBCL cohorts. The presence of oxidative DNA damage biomarkers identified a poor prognosis double expresser (DE)-DLBCL subset, characterized by relatively higher BCL-2 gene expression levels and enrichment for DH lymphomas. Based on these findings, we tested therapeutic strategies based on combined DDR and BCL-2 inhibition, confirming efficacy and synergistic interactions in in vitro and in vivo DH-DLBCL models. These data provide the rationale for precision-therapy strategies based on combined DDR and BCL-2 inhibition in DH or DE-DLBCL.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Gene Expression Regulation, Leukemic/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Thiophenes/pharmacology , Urea/analogs & derivatives , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Therapy, Combination , Female , Follow-Up Studies , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Prognosis , Prospective Studies , Retrospective Studies , Survival Rate , Urea/pharmacology , Young Adult
17.
Curr Med Chem ; 28(11): 2114-2136, 2021.
Article in English | MEDLINE | ID: mdl-33109033

ABSTRACT

The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.


Subject(s)
Drug Repositioning , Neoplasms , Aged , Humans , Neoplasms/drug therapy
18.
Cancer Res ; 81(3): 685-697, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33268528

ABSTRACT

Checkpoint inhibitors (CI) instigate anticancer immunity in many neoplastic diseases, albeit only in a fraction of patients. The clinical success of cyclophosphamide (C)-based haploidentical stem-cell transplants indicates that this drug may re-orchestrate the immune system. Using models of triple-negative breast cancer (TNBC) with different intratumoral immune contexture, we demonstrate that a combinatorial therapy of intermittent C, CI, and vinorelbine activates antigen-presenting cells (APC), and abrogates local and metastatic tumor growth by a T-cell-related effect. Single-cell transcriptome analysis of >50,000 intratumoral immune cells after therapy treatment showed a gene signature suggestive of a change resulting from exposure to a mitogen, ligand, or antigen for which it is specific, as well as APC-to-T-cell adhesion. This transcriptional program also increased intratumoral Tcf1+ stem-like CD8+ T cells and altered the balance between terminally and progenitor-exhausted T cells favoring the latter. Overall, our data support the clinical investigation of this therapy in TNBC. SIGNIFICANCE: A combinatorial therapy in mouse models of breast cancer increases checkpoint inhibition by activating antigen-presenting cells, enhancing intratumoral Tcf1+ stem-like CD8+ T cells, and increasing progenitor exhausted CD8+ T cells.


Subject(s)
Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cyclophosphamide/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Vinorelbine/pharmacology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunity, Cellular , Mice , Mice, Inbred BALB C , Transcriptome , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology
20.
Front Oncol ; 10: 1225, 2020.
Article in English | MEDLINE | ID: mdl-32793492

ABSTRACT

The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.

SELECTION OF CITATIONS
SEARCH DETAIL