Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 25(1): 614, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890559

ABSTRACT

BACKGROUND: To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the Orestias genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of Orestias within the Cyprinodontiformes order. RESULTS: We sequenced the genome of three Orestias species from the Andean Altiplano. Our analysis revealed that the small genome size in this genus (~ 0.7 Gb) was caused by a contraction in transposable element (TE) content, particularly in DNA elements and short interspersed nuclear elements (SINEs). Using predicted gene sequences, we generated a phylogenetic tree of Cyprinodontiformes using 902 orthologs extracted from all 32 available genomes as well as three outgroup species. We complemented this analysis with a phylogenetic reconstruction and time calibration considering 12 molecular markers (eight nuclear and four mitochondrial genes) and a stratified taxon sampling to consider 198 species of nearly all families and genera of this order. Overall, our results show that phylogenetic closeness is directly related to geographical distance. Importantly, we found that Orestias is not part of the Cyprinodontidae family, and that it is more closely related to the South American fish fauna, being the Fluviphylacidae the closest sister group. CONCLUSIONS: The evolutionary history of the Orestias genus is linked to the South American ichthyofauna and it should no longer be considered a member of the Cyprinodontidae family. Instead, we submit that Orestias belongs to the Orestiidae family, as suggested by Freyhof et al. (2017), and that it is the sister group of the Fluviphylacidae family, distributed in the Amazonian and Orinoco basins. These two groups likely diverged during the Late Eocene concomitant with hydrogeological changes in the South American landscape.


Subject(s)
Cyprinodontiformes , Evolution, Molecular , Genome , Phylogeny , Animals , Cyprinodontiformes/genetics , Cyprinodontiformes/classification , DNA Transposable Elements/genetics , Genome Size
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34725254

ABSTRACT

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Subject(s)
Plants/genetics , Altitude , Chile , Climate Change , Desert Climate , Ecosystem , Genomics/methods , Phylogeny , Soil , Soil Microbiology
3.
Med Microbiol Immunol ; 212(1): 25-34, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36370196

ABSTRACT

The understanding of the host immune response to SARS-CoV-2 variants of concern is critical for improving diagnostics, therapy development, and vaccines. Here, we analyzed the level of neutralizing antibodies against SARS-CoV-2 D614G, Delta, Gamma, Mu, and Omicron variants in D614G infected healthcare workers during a follow-up up to 6 months after recovery. We followed up 76 patients: 60.5% were women and 39.5% men. The 96.1% and 3.9% were symptomatic and asymptomatic, respectively. The most frequent symptoms were headache, myalgia, and cough. The 65.8%, 65.8%, and 92.1% of the infected individuals were positive for neutralizing antibodies against D614G variant at 2, 4, and 6 months of follow-up, respectively. The 26.3%, 48.7% and 65.8% of patients neutralized Delta variant, 19.7%, 32.9% and 52.6% of patients neutralized Gamma, 7.9%, 19.7% and 44.7% of patients neutralized Mu, and 4.0%, 9.2% and 15.8% of patients neutralized Omicron. Low neutralization against Gamma and Mu variants was observed during the follow-up, and very low against the Omicron variant was detected during the same period. The median of neutralizing antibody titers against D614G and Delta variants increased significantly during the follow-up. An association was observed between the levels of neutralizing antibodies against D614G and Delta variants and the severity of the disease. Our results suggest an immune escape from neutralizing antibodies with the Omicron variant because of the many mutations localized in the S protein.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Female , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibodies, Viral
4.
Biol Res ; 56(1): 6, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36797803

ABSTRACT

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Subject(s)
Insecta , Animals , Insecta/genetics , Sequence Analysis, DNA , Chile
5.
Genomics ; 114(1): 305-315, 2022 01.
Article in English | MEDLINE | ID: mdl-34954349

ABSTRACT

Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.


Subject(s)
Fundulidae , Killifishes , Adaptation, Physiological/genetics , Altitude , Animals , Fundulidae/genetics , Killifishes/genetics , Phylogeny , Transcriptome
6.
Plant Physiol ; 185(3): 914-933, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793913

ABSTRACT

Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.


Subject(s)
Arabidopsis Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Pectins/metabolism , Rhamnogalacturonans/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Monosaccharide Transport Proteins/genetics , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism
7.
BMC Genomics ; 22(1): 17, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33413072

ABSTRACT

BACKGROUND: Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS: To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS: Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.


Subject(s)
Prunus persica , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Prunus persica/genetics , Prunus persica/metabolism
8.
BMC Plant Biol ; 20(1): 365, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746778

ABSTRACT

BACKGROUND: Berry size is considered as one of the main selection criteria in table grapes breeding programs, due to the consumer preferences. However, berry size is a complex quantitive trait under polygenic control, and its genetic determination of berry weight is not yet fully understood. The aim of this work was to perform marker discovery using a transcriptomic approach, in order to identify and characterize SNP and InDel markers associated with berry size in table grapes. We used an integrative analysis based on RNA-Seq, SNP/InDel search and validation on table grape segregants and varieties with different genetic backgrounds. RESULTS: Thirty SNPs and eight InDels were identified using a transcriptomic approach (RNA-Seq). These markers were selected from SNP/InDel found among segregants from a Ruby x Sultanina population with contrasting phenotypes for berry size. The set of 38 SNP and InDel markers was distributed in eight chromosomes. Genotype-phenotype association analyses were performed using a set of 13 RxS segregants and 41 table grapes varieties with different genetic backgrounds during three seasons. The results showed several degrees of association of these markers with berry size (10.2 to 30.7%) as other berry-related traits such as length and width. The co-localization of SNP and /or InDel markers and previously reported QTLs and candidate genes associated with berry size were analysed. CONCLUSIONS: We identified a set of informative and transferable SNP and InDel markers associated with berry size. Our results suggest the suitability of SNPs and InDels as candidate markers for berry weight in seedless table grape breeding. The identification of genomic regions associated with berry weight in chromosomes 8, 15 and 17 was achieved with supporting evidence derived from a transcriptome experiment focused on SNP/InDel search, as well as from a QTL-linkage mapping approach. New regions possibly associated with berry weight in chromosomes 3, 6, 9 and 14 were identified.


Subject(s)
Fruit/genetics , INDEL Mutation , Polymorphism, Single Nucleotide , Vitis/genetics , Fruit/growth & development , Gene Expression Profiling , Genetic Markers , Genotype , Phenotype , Quantitative Trait Loci , RNA, Plant , RNA-Seq , Vitis/growth & development
9.
Plant Cell ; 29(1): 129-143, 2017 01.
Article in English | MEDLINE | ID: mdl-28062750

ABSTRACT

UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Golgi Apparatus/metabolism , Nucleotide Transport Proteins/metabolism , Polysaccharides/metabolism , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Immunoblotting , Microscopy, Confocal , Mutation , Nucleotide Transport Proteins/genetics , Pectins/metabolism , Plants, Genetically Modified , Seeds/genetics , Uridine Diphosphate Sugars/metabolism
10.
Proc Natl Acad Sci U S A ; 114(16): 4261-4266, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28373556

ABSTRACT

In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Golgi Apparatus/metabolism , Uridine Diphosphate Sugars/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport , Cell Wall/metabolism , Gene Expression Regulation, Plant
11.
J Exp Bot ; 70(19): 5071-5088, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31145803

ABSTRACT

Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Monosaccharide Transport Proteins/genetics , Plant Mucilage/biosynthesis , Transcriptome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Mutation
12.
Physiol Plant ; 166(3): 772-793, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30203620

ABSTRACT

Chilling injury represents a major constrain for crops productivity. Prunus persica, one of the most relevant rosacea crops, have early season varieties that are resistant to chilling injury, in contrast to late season varieties, which display chilling symptoms such as mealiness (dry, sandy fruit mesocarp) after prolonged storage at chilling temperatures. To uncover the molecular processes related to the ability of early varieties to withstand mealiness, postharvest and genome-wide RNA-seq assessments were performed in two early and two late varieties. Differences in juice content and ethylene biosynthesis were detected among early and late season fruits that became mealy after exposed to prolonged chilling. Principal component and data distribution analysis revealed that cold-stored late variety fruit displayed an exacerbated and unique transcriptome profile when compared to any other postharvest condition. A differential expression analysis performed using an empirical Bayes mixture modeling approach followed by co-expression and functional enrichment analysis uncover processes related to ethylene, lipids, cell wall, carotenoids and DNA metabolism, light response, and plastid homeostasis associated to the susceptibility or resistance of P. persica varieties to chilling stress. Several of the genes related to these processes are in quantitative trait loci (QTL) associated to mealiness in P. persica. Together, these analyses exemplify how P. persica can be used as a model for studying chilling stress in plants.


Subject(s)
Prunus persica/genetics , RNA/genetics , Transcriptome/genetics , Bayes Theorem , Cold Temperature , Ethylenes/metabolism , Fruit/genetics , Quantitative Trait Loci/genetics
13.
J Cell Biochem ; 119(8): 6857-6868, 2018 08.
Article in English | MEDLINE | ID: mdl-29693271

ABSTRACT

Low temperatures, salinity, and drought cause significant crop losses. These conditions involve osmotic stress, triggering transcriptional remodeling, and consequently, the restitution of cellular homeostasis and growth recovery. Protein transcription factors regulate target genes, thereby mediating plant responses to stress. bZIP17 is a transcription factor involved in cellular responses to salinity and the unfolded protein response. Because salinity can also produce osmotic stress, the role of bZIP17 in response to osmotic stress was assessed. Mannitol treatments induced the transcript accumulation and protein processing of bZIP17. Transcriptomic analyses showed that several genes associated with seed storage and germination showed lower expression in bzip17 mutants than in wild-type plants. Interestingly, bZIP17 transcript was more abundant in seeds, and germination analyses revealed that wild-type plants germinated later than bzip17 mutants in the presence of mannitol, but no effects were observed when the seeds were exposed to ABA. Finally, the transcript levels of bZIP17 target genes that control seed storage and germination were assessed in seeds exposed to mannitol treatments, which showed lower expression levels in bzip17 mutants compared to the wild-type seeds. These results suggest that bZIP17 plays a role in osmotic stress, acting as a negative regulator of germination through the regulation of genes involved in seed storage and germination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant/physiology , Germination/physiology , Osmotic Pressure/physiology , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Seeds/genetics
14.
Proc Natl Acad Sci U S A ; 111(31): 11563-8, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25053812

ABSTRACT

Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.


Subject(s)
Arabidopsis/metabolism , Golgi Apparatus/metabolism , Monosaccharide Transport Proteins/metabolism , Multigene Family , Rhamnose/metabolism , Uridine Diphosphate Glucose/metabolism , Arabidopsis/enzymology , Biological Transport , Kinetics , Molecular Sequence Data , Pectins/metabolism , Phylogeny , Proteolipids/metabolism , Subcellular Fractions/metabolism , Time Factors
15.
Glycobiology ; 26(9): 913-925, 2016 09.
Article in English | MEDLINE | ID: mdl-27507902

ABSTRACT

The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.


Subject(s)
Cell Wall/genetics , Plant Cells/metabolism , Polysaccharides/biosynthesis , Sugars/metabolism , Biological Transport/genetics , Cell Wall/chemistry , Cell Wall/metabolism , Glycosylation , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Monosaccharide Transport Proteins , Nucleotides/chemistry , Nucleotides/metabolism , Polysaccharides/genetics
16.
BMC Plant Biol ; 16: 104, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27118480

ABSTRACT

BACKGROUND: Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6-8 mm berries (B68) phenological stages. RESULTS: A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. CONCLUSIONS: We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.


Subject(s)
Fruit/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Vitis/genetics , Cluster Analysis , Fruit/growth & development , Fruit/physiology , Gene Ontology , Genes, Plant/genetics , Genotype , Phenotype , Plant Breeding/methods , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Sequence Analysis, RNA/methods , Vitis/growth & development , Vitis/physiology
17.
New Phytol ; 211(1): 65-74, 2016 07.
Article in English | MEDLINE | ID: mdl-27240710

ABSTRACT

Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Evolution, Molecular , Homeostasis , Membrane Transport Proteins/genetics , Phylogeny , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified
18.
J Cell Biochem ; 116(8): 1638-45, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25704669

ABSTRACT

Plants can be severely affected by salt stress. Since these are sessile organisms, they have developed different cellular responses to cope with this problem. Recently, it has been described that bZIP17 and bZIP60, two ER-located transcription factors, are involved in the cellular response to salt stress. On the other hand, bZIP60 is also involved in the unfolded protein response (UPR), a signaling pathway that up-regulates the expression of ER-chaperones. Coincidentally, salt stress produces the up-regulation of BiP, one of the main chaperones located in this organelle. Then, it has been proposed that UPR is associated to salt stress. Here, by using insertional mutant plants on bZIP17 and bZIP60, we show that bZIP17 regulate the accumulation of the transcript for the chaperone BiP3 under salt stress conditions, but does not lead to the accumulation of UPR-responding genes such as the chaperones Calnexin, Calreticulin, and PDIL under salt treatments. In contrast, DTT, a known inducer of UPR, leads to the up-regulation of all these chaperones. On the other hand, we found that bZIP60 regulates the expression of some bZIP17 target genes under conditions were splicing of bZIP60 does not occur, suggesting that the spliced and unspliced forms of bZIP60 play different roles in the physiological response of the plant. Our results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Basic-Leucine Zipper Transcription Factors/genetics , Molecular Chaperones/genetics , Alternative Splicing , Arabidopsis/metabolism , Dithiothreitol/pharmacology , Gene Expression Regulation, Plant , Salinity , Stress, Physiological , Unfolded Protein Response/drug effects
19.
BMC Plant Biol ; 15: 127, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017403

ABSTRACT

BACKGROUND: UDP-glucose: glycoprotein glucosyltransferase (UGGT) is a key player in the quality control mechanism (ER-QC) that newly synthesized glycoproteins undergo in the ER. It has been shown that the UGGT Arabidopsis orthologue is involved in ER-QC; however, its role in plant physiology remains unclear. RESULTS: Here, we show that two mutant alleles in the At1g71220 locus have none or reduced UGGT activity. In wild type plants, the AtUGGT transcript levels increased upon activation of the unfolded protein response (UPR). Interestingly, mutants in AtUGGT exhibited an endogenous up-regulation of genes that are UPR targets. In addition, mutants in AtUGGT showed a 30% reduction in the incorporation of UDP-Glucose into the ER suggesting that this enzyme drives the uptake of this substrate for the CNX/CRT cycle. Plants deficient in UGGT exhibited a delayed growth rate of the primary root and rosette as well as an alteration in the number of leaves. These mutants are more sensitive to pathogen attack as well as heat, salt, and UPR-inducing stressors. Additionally, the plants showed impairment in the establishment of systemic acquired resistance (SAR). CONCLUSIONS: These results show that a lack of UGGT activity alters plant vegetative development and impairs the response to several abiotic and biotic stresses. Moreover, our results uncover an unexpected role of UGGT in the incorporation of UDP-Glucose into the ER lumen in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Endoplasmic Reticulum/metabolism , Glucosyltransferases/metabolism , Plant Development , Stress, Physiological , Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Endoplasmic Reticulum Stress , Genes, Plant , Mutation/genetics , Subcellular Fractions/enzymology , Unfolded Protein Response
20.
Molecules ; 20(3): 3667-80, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25711424

ABSTRACT

Postharvest softening of grape berries is one of the main problems affecting grape quality during export. Cell wall disassembly, especially of pectin polysaccharides, has been commonly related to fruit softening, but its influence has been poorly studied in grapes during postharvest life. In order to better understand this process, the Thompson seedless (TS) variety, which has significantly decreased berry texture after prolonged cold storage, was compared to NN107, a new table grape variety with higher berry firmness. Biochemical analysis revealed a greater amount of calcium in the cell wall of the NN107 variety and less reduction of uronic acids than TS during cold storage. In addition, the activity of polygalacturonase was higher in TS than NN107 berries; meanwhile pectin methylesterase activity was similar in both varieties. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) suggests a differential pectin metabolism during prolonged cold storage. Results revealed lower pectin fragments in TS after 60 days of cold storage and shelf life (SL) compared to 30 days of cold storage and 30 + SL, while NN107 maintained the same fragment profile across all time points evaluated. Our results suggest that these important differences in cell wall metabolism during cold storage could be related to the differential berry firmness observed between these contrasting table grape varieties.


Subject(s)
Calcium/metabolism , Cell Wall/metabolism , Fruit/chemistry , Pectins/metabolism , Uronic Acids/analysis , Vitis/chemistry , Carboxylic Ester Hydrolases/metabolism , Cold Temperature , Food Storage , Fruit/anatomy & histology , Fruit/classification , Fruit/metabolism , Phenotype , Polygalacturonase/metabolism , Polysaccharides/metabolism , Vitis/anatomy & histology , Vitis/classification , Vitis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL