Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Am Chem Soc ; 145(1): 455-464, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36546690

ABSTRACT

A supramolecular chiral hydrogen-bonded tetrameric aggregate possessing a large cavity and tetraarylporphyrin substituents was assembled using alternating 4H- and 2H-bonds between ureidopyrimidinone and isocytosine units, respectively. The aggregation mode was rationally shifted from social to narcissistic self-sorting by changing urea substituent size only. The H-bonded tetramer forms a strong complex with C60 guest, at the same time undergoing remarkable structural changes. Namely, the cavity adjusts to the guest via keto-to-enol tautomerization of the ureidopyrimidinone unit and as a result, porphyrin substituents move apart from each other in a scissor blade-like opening fashion. The rearrangement is accompanied by C-H···π interaction between the alkyl solubilizing groups and the nearby placed porphyrin π-systems. The latter interaction was found to be crucial for the guest complexation event, providing energetic compensation for otherwise costly tautomerization. We showed that only the systems possessing sufficiently long alkyl chains capable of interacting with a porphyrin ring are able to form a complex with C60. The structural rearrangement of the tetramer was quantitatively characterized by electron paramagnetic resonance pulsed dipolar spectroscopy measurements using photogenerated triplets of porphyrin and C60 as spin probes. Further exploring the C-H···π interaction as a decisive element for the C60 recognition, we investigated the guest-induced self-sorting phenomenon using scrambled tetramer assemblies composed of two types of monomers possessing alkyl chains of different lengths. The presence of the fullerene guest has enabled the selective scavenging of monomers capable of C-H···π interaction to form homo-tetrameric aggregates.


Subject(s)
Fullerenes , Porphyrins , Porphyrins/chemistry , Fullerenes/chemistry , Magnetic Resonance Spectroscopy , Hydrogen Bonding , Hydrogen
2.
J Org Chem ; 88(13): 9569-9573, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37268314

ABSTRACT

Rapid access to both enantiomers of vellosimine and its derivatives is secured from a readily affordable C2-symmetric 9-azabicyclo[3.3.1]nonane precursor available in both enantiomeric forms. The strategy reported leverages desymmetrization via intramolecular cyclization used to assemble the key intermediate with two differentiated carbonyl groups. Late-stage site selective indolization enables a concise synthesis of vellosimines and a straightforward diversification of the alkaloid scaffold.


Subject(s)
Alkaloids , Indoles , Cyclization , Stereoisomerism
3.
J Am Chem Soc ; 144(18): 8231-8241, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35500199

ABSTRACT

Molecular tweezers are open-ended, cavity-possessing U-shaped molecular architectures with high potential for various applications in supramolecular chemistry. Their covalent synthesis, however, is often tedious and the structures obtained lack structural responsiveness beyond the limited conformational flexibility of the scaffold. Herein we present a proof-of-concept study on the design, synthesis, assembly, and transformations of a novel supramolecular construct─a fully noncovalent molecular tweezer. The supramolecular tweezer was assembled from a set of four building blocks, composed of two identical molecular angle bars and two flat aromatic extension wings, using hydrogen bonding only. The chirality-assisted aggregation process was utilized to ensure scaffold bending directionality using enantiomerically pure bicyclic angle bars. To address the challenges associated with shifting of the equilibrium from strong cooperative narcissistic self-sorting of self-complementary angle bars in cyclic aggregates toward integrative self-sorting in molecular tweezers, a rational desymmetrization strategy was applied. The dynamic supramolecular tweezer has been shown to display rich supramolecular chemistry, allowing for stimuli-responsive change in aggregate topology and solvent-responsive supramolecular polymerization.


Subject(s)
Hydrogen , Animals , Hydrogen Bonding , Polymerization , Stereoisomerism
4.
Chemistry ; 28(65): e202202698, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36136376

ABSTRACT

We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.

5.
J Phys Chem A ; 125(7): 1637-1641, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33576226

ABSTRACT

The successful development of thermally activated delayed fluorescence (TADF) OLEDs relies on advances in molecular design. To guide the molecular design toward compounds with preferable properties, special care should be taken while estimating the parameters of prompt and delayed fluorescence. Mistakes made in the initial steps of analysis may lead to completely misleading conclusions. Here we show that inaccuracies usually are introduced in the very first steps while estimating the solid-state prompt and delayed fluorescence quantum yields, resulting in an overestimation of prompt fluorescence (PF) parameters and a subsequent underestimation of the delayed emission (DF) yield and rates. As a solution to the problem, a working example of a more sophisticated analysis is provided, stressing the importance of in-depth research of emission properties in both oxygen-saturated and oxygen-free surroundings.

6.
J Am Chem Soc ; 142(7): 3658-3670, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31983204

ABSTRACT

We report on the synthesis and self-assembly study of novel supramolecular monomers encompassing quadruple hydrogen-bonding motifs and metal-coordinating 2,2'-bipyridine units. When mixed with metal ions such as Fe2+ or Zn2+, the tetrahedron cage complexes are formed in quantitative yields and full diastereoselectivity, even in highly polar acetonitrile or methanol solvents. The symmetry of the complexes obtained has been shown to depend critically on the flexibility of the ligand. Restriction of the rotation of the hydrogen-bonding unit with respect to the metal-coordinating site results in a T-symmetric cage, whereas introducing flexibility either through a methylene linker or rotating benzene ring allows the formation of S4-symmetric cages with self-filled interior. In addition, the possibility to select between tetrahedral cages or helicates and to control the dimensions of the aggregate has been demonstrated with a three-component assembly using external hydrogen-bonding molecular inserts or by varying the radius of the metal ion (Hg2+ vs Fe2+). Self-sorting studies of individual Fe2+ complexes with ligands of different sizes revealed their inertness toward ligand scrambling.

7.
Phys Chem Chem Phys ; 22(14): 7392-7403, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32215384

ABSTRACT

Solid state NIR-to-visible photon upconversion (UC) mediated by triplet-triplet annihilation (TTA) is necessitated by numerous practical applications. Yet, efficient TTA-UC remains a highly challenging task. In this work palladium phthalocyanine-sensitized NIR-to-vis solid UC films based on a popular rubrene emitter are thoroughly studied with the primary focus on revealing the impact of t-butyl substitution in rubrene on the TTA-UC performance. The solution-processed UC films were additionally doped with a small amount of emissive singlet sink tetraphenyldibenzoperiflanthene (DBP) for collecting upconverted singlets from rubrene and in this way diminishing detrimental singlet fission. Irrespective of the excitation conditions used, t-butyl-substituted rubrene (TBR) was found to exhibit enhanced TTA-UC performance as compared to that of rubrene at an optimal emitter doping of 80 wt% in polystyrene films. Explicitly, in the TTA dominated regime attained at high excitation densities, 4-fold higher UC quantum yield (ΦUC) achieved in TBR-based films was caused by the reduced fluorescence concentration quenching mainly due to suppressed singlet fission. Under low light conditions, i.e. in the regime governed by spontaneous triplet decay, even though triplet exciton diffusion was obstructed in TBR films by t-butyl moieties, the subsequently reduced TTA rate was counterbalanced by both suppressed singlet fission and non-radiative triplet quenching, still ensuring higher ΦUC of these films as compared to those of unsubstituted rubrene films.

8.
Angew Chem Int Ed Engl ; 59(45): 20120-20128, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32697013

ABSTRACT

Catalyst-free addition of ketone enolate to non-activated multiple C-C bonds involves non-complementary reaction partners and typically requires super-basic conditions. On the other hand, highly aggregated or solvated enolates are not reactive enough to undergo direct addition to alkenes or alkynes. Herein, we report a new anionic cascade reaction for one-step assembly of intriguing molecular scaffolds possessing contiguous six-, five-, and four-membered rings, representing a formal [2+2] enol-allene cycloaddition. Reaction proceeds under very mild conditions and with excellent diastereoselectivity. Deeper mechanistic and computational studies revealed unusually slow proton transfer phenomenon in cyclic ketone intermediate and explained peculiar stereochemical outcome.

9.
Chemistry ; 24(53): 14028-14033, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30070741

ABSTRACT

A new strategy towards tubular hydrogen-bonded polymers based on the self-assembly of isocytosine tautomers in orthogonal directions is proposed and experimentally verified, including by 1 H fast magic-angle spinning (MAS) solid-state NMR. The molecular tubes obtained possess large internal diameter and tailor-made outer functionalities rendering them potential candidates for a number of applications.

10.
J Org Chem ; 82(24): 13423-13439, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29206042

ABSTRACT

Chemoselective acidic hydrolysis of sulfonamides with trifluoromethanesulfonic acid has been evaluated as a deprotection method and further extended to more complex synthetic applications. In contrast to conventional troublesome sulfonamide hydrolysis, a near-stoichiometric amount of acid was found to be sufficient to bring about efficient deprotection of various neutral or electron-deficient N-arylsulfonamides, whereas electron-rich substrates provided sulfonyl group migration products. The deprotection method developed is fully selective for N-arylsulfonamides, and the possibility to discriminate among various different sulfonamides is demonstrated.

11.
Angew Chem Int Ed Engl ; 55(1): 208-12, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26537418

ABSTRACT

The assembly of a discrete hydrogen-bonded molecular tube from eight small identical monomers is reported. Tube assembly was accomplished by means of selective heterodimerization between isocytosine and ureidopyrimidinone hydrogen-bonding motifs embedded in an enantiopure bicyclic building block, leading to the selective formation of an octameric supramolecular tube. Upon introduction of a fullerene guest molecule, the octameric tube rearranges into a tetrameric inclusion complex and the hydrogen-bonding mode is switched. The dynamic behavior of the system is further explored in solvent- and guest-responsive self-sorting experiments.

12.
J Am Chem Soc ; 137(33): 10536-46, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-25950402

ABSTRACT

The formation of an unprecedented decameric capsule in carbon disulfide, held together by the combination of double and triple hydrogen bonds between isocytosine units embedded in an enantiomerically pure bicyclic framework is reported. The aggregation occurs via symmetry breaking of the enantiopure intrinsically C2-symmetric monomer brought about by solvent, induced tautomerization of the hydrogen-bonding unit. We show that the topology of the aggregate is responsive to the solvent in which the assembly takes place. In this study we demonstrate that in carbon disulfide the chiral decameric cavity aggregate consisting of three forms of the same monomer, differing in their hydrogen bonding to each other is selectively formed, representing a tube-like structure capped with two C2-symmetric monomers. The large cylindrical cavity produced selectively accommodates one partially solvated C60 molecule, and molecular dynamic simulations revealed the special role of the solvent in the inclusion mechanism. The strategy described herein represents the first step toward the creation of a new class of hydrogen-bonded tubular objects from only one small symmetric building block by solvent-responsive aggregation.

13.
Chemistry ; 21(25): 9157-64, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25959630

ABSTRACT

A hitherto unknown reactivity of a strained four-membered heterocycle, 1,2-oxazetidine, is reported. When reacted with organometallic compounds, this reagent provides electrophilic oxygen with a nitrogen-terminated two-carbon-atom tether. The synthetic versatility of the products obtained was demonstrated in various transformations, leading to efficient synthesis of six-, seven-, and eight-membered heterocyclic systems of pharmaceutical importance.

14.
J Am Chem Soc ; 135(32): 12082-90, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23906313

ABSTRACT

We report a synthetic method to build oriented architectures with three coaxial π-stacks directly on solid surfaces. The approach operates with orthogonal dynamic bonds, disulfides and hydrazones, self-organizing surface-initiated polymerization (SOSIP), and templated stack-exchange (TSE). Compatibility with naphthalenediimides, perylenediimides, squaraines, fullerenes, oligothiophenes, and triphenylamine is confirmed. Compared to photosystems composed of two coaxial channels, the installation of a third channel increases photocurrent generation up to 10 times. Limitations concern giant stack exchangers that fail to enter SOSIP architectures (e.g., phthalocyanines surrounded by three fullerenes), and planar triads that can give folded or interdigitated charge-transfer architectures rather than three coaxial channels. The reported triple-channel surface architectures are as sophisticated as it gets today, the directionality of their construction promises general access to multichannel architectures with multicomponent gradients in each individual channel. The reported approach will allow us to systematically unravel the ultrafast photophysics of molecular dyads and triads in surface architectures, and might become useful to develop conceptually innovative optoelectronic devices.

15.
J Am Chem Soc ; 135(40): 15263-8, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24067092

ABSTRACT

Synthesis, solvent-, and guest-controlled self-assembly, and self-sorting of new hydrogen-bonded chiral cavity receptors are reported. The design of the cavity is based on the cyclic self-aggregation of monomers containing the 4H-bonding ureidopyrimidinone motif fused with the bicylo[3.3.1]nonane framework. Selective formation of kinetically inert cyclic tetramers is observed in chloroform, while in toluene an equilibrium between tetrameric and pentameric forms exists. The high affinity of the tetrameric aggregates toward C60 and C70 is observed in aromatic solvents. The host-guest interaction of unconventional π-acidic supramolecular receptors for fullerenes is turned off and on by changing the solvent, whereas the selection of size and the very composition of the cavity aggregate is controlled by either the change of solvent or the addition of fullerene guest, making our systems a new type of self-sorting device.

16.
J Org Chem ; 78(11): 5339-48, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23635000

ABSTRACT

The synthesis of the enantiomerically pure N-Boc 9-azabicyclo[3.3.1]nonane-2,6-dione (4b), a potentially useful chiral building block, from N-Bn and N-Boc 9-azabicyclo[3.3.1]nonane-2,6-diols 2a and 2b was accomplished. The enantiomer resolution of diols 2a and 2b was achieved by crystallization of their diastereomeric esters or by kinetic resolution of the racemic diol 2a using lipase from Candida rugosa (CRL). Both enantiomers of N-Boc protected diol 2b were converted into the corresponding enantiomerically pure diones 4b, the absolute configuration of which was determined by comparison of the experimental and simulated circular dichroism (CD) spectra, obtained by ab initio time-dependent density functional theory (TDDFT) calculations. The (-)-(1R,5R)/(+)-(1S,5S) absolute configuration of 4b inferred from the TDDFT calculations was confirmed via analysis of the CD spectrum of endo,endo-dibenzoate (+)-7 derived from diol (+)-2b and application of the benzoate exciton chirality method. The assigned absolute configuration was further supported by the results of kinetic resolution of diol 2a using Candida rugosa lipase, which exhibited kinetic preference toward the (1R,2R,5R,6R)-enantiomer in agreement with the Kazlauskas' rule.


Subject(s)
Azabicyclo Compounds , Oxygen/chemistry , Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/isolation & purification , Molecular Structure , Quantum Theory , Stereoisomerism
17.
Org Biomol Chem ; 11(11): 1754-65, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23361265

ABSTRACT

In nature, spectacular function is achieved by highly sophisticated supramolecular architectures. Little is known what we would obtain if we could create complexity with similar precision, because the synthetic methods to do so are not available. This account summarizes recent approaches conceived to improve on this situation. With self-organizing surface-initiated polymerization (SOSIP), charge-transporting stacks can be grown directly on solid substrates with molecular-level precision. The extension to templated self-sorting (SOSIP-TSS) offers a supramolecular approach to multicomponent architectures. A solid theoretical framework for the transcription of information by templated self-sorting has been introduced, intrinsic templation efficiencies up to 97% have been achieved, and the existence of self-repair has been shown. The extension to templated stack exchange (SOSIP-TSE) offers the complementary covalent approach. Compatibility of this robust method with the creation of double-channel architectures with antiparallel two-component gradients has been demonstrated.


Subject(s)
Organic Chemicals/chemical synthesis , Models, Molecular , Molecular Structure , Organic Chemicals/chemistry , Polymerization , Surface Properties
18.
Chirality ; 25(2): 107-13, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23229152

ABSTRACT

Templated self-sorting on surfaces has been introduced recently as a new approach to construct multicomponent architectures directly on solid oxide surfaces. In this process, two-dimensional information placed on the surface is transcribed into three-dimensional architectures with up to 97% intrinsic templation efficiency. Previously, we have shown that isosteric partners of different color do neither self-sort nor respond to templation during self-organizing surface-initiated copolymerization (co-SOSIP). To evaluate the importance of chirality in this process, co-SOSIP with mixtures of pseudo-enantiomers of isosteric partners is explored. The composition of the obtained SOSIP architectures is independent of the composition of the initiator mixtures on the surface. This absence of templation from the surface rules out the occurrence of uniform self-sorting of pseudo-enantiomeric isosters, a process similar to chiral resolution in conglomerates. Alternate self-sorting, the complementary process comparable with racemic crystallization, is indistinguishable from random mixing in structural studies. However, different photocurrent generation by pseudo-racemic compared with pseudo-homochiral photosystems support, on the functional level, that alternate self-sorting occurs with pseudo-enantiomeric partners. These results support that chirality is important for the transcription of two-dimensional information into three-dimensional architectures and suggest that alternate self-sorting dominates over uniform self-sorting as racemic crystallization dominates over chiral resolution.

19.
Angew Chem Int Ed Engl ; 52(38): 9940-3, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23946201

ABSTRACT

The conclusion is inevitable: Increasing stabilization of an anionic transition state with increasing π-acidity of the catalyst is observed; thus, anion-π interactions can contribute to catalysis.

20.
ACS Appl Mater Interfaces ; 15(8): 11259-11267, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36797999

ABSTRACT

We report a straightforward method for creating large-area, microscale resolution patterns of functional amines on self-assembled monolayers by the photoinduced local acidification of a flat elastomeric stamp enriched with photoacid. The limited diffusivity of the photoactivated merocyanine acid in poly(dimethylsiloxane) (PDMS) enabled to confine efficient deprotection of N-tert-butyloxycarbonyl amino group (N-Boc) to line widths below 10 µm. The experimental setup is very simple and is built around the conventional HD-DVD optical pickup. The method allows cost-efficient, maskless, large-area chemical patterning while avoiding potentially cytotoxic photochemical reaction products. The activation of the embedded photoacid occurs within the stamp upon illumination with the laser beam and the process is fully reversible. Preliminary positive results highlight the possibility of repeatable use of the same stamp for the creation of different patterns.

SELECTION OF CITATIONS
SEARCH DETAIL