Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Mol Life Sci ; 77(11): 2235-2253, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31473770

ABSTRACT

Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate receptors to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO, thereby triggering NVC. Recent work suggested that endothelial Ca2+ signals could underpin NVC by recruiting the endothelial NO synthase. For instance, acetylcholine induced intracellular Ca2+ signals followed by NO release by activating muscarinic 5 receptors in hCMEC/D3 cells, a widely employed model of human brain microvascular endothelial cells. Herein, we sought to assess whether also glutamate elicits metabotropic Ca2+ signals and NO release in hCMEC/D3 cells. Glutamate induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) that was blocked by α-methyl-4-carboxyphenylglycine and phenocopied by trans-1-amino-1,3-cyclopentanedicarboxylic acid, which, respectively, block and activate group 1 metabotropic glutamate receptors (mGluRs). Accordingly, hCMEC/D3 expressed both mGluR1 and mGluR5 and the Ca2+ response to glutamate was inhibited by their pharmacological blockade with, respectively, CPCCOEt and MTEP hydrochloride. The Ca2+ response to glutamate was initiated by endogenous Ca2+ release from the endoplasmic reticulum and endolysosomal Ca2+ store through inositol-1,4,5-trisphosphate receptors and two-pore channels, respectively, and sustained by store-operated Ca2+ entry. In addition, glutamate induced robust NO release that was suppressed by pharmacological blockade of the accompanying increase in [Ca2+]i. These data demonstrate for the first time that glutamate may induce metabotropic Ca2+ signals in human brain microvascular endothelial cells. The Ca2+ response to glutamate is likely to support NVC during neuronal activity, thereby reinforcing the emerging role of brain microvascular endothelial cells in the regulation of CBF.


Subject(s)
Brain/blood supply , Calcium Signaling , Endothelial Cells/metabolism , Glutamic Acid/metabolism , Neurovascular Coupling , Receptors, Metabotropic Glutamate/metabolism , Cell Line , Endothelial Cells/cytology , Humans , Microvessels/cytology , Microvessels/metabolism , Nitric Oxide/metabolism
2.
J Cell Physiol ; 235(2): 1515-1530, 2020 02.
Article in English | MEDLINE | ID: mdl-31310018

ABSTRACT

The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 µM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.


Subject(s)
Brain/blood supply , Calcium/metabolism , Endothelial Cells/drug effects , Histamine/pharmacology , Microvessels/cytology , Nitric Oxide/metabolism , Cell Line , Endothelial Cells/metabolism , Histamine Agonists/pharmacology , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , NADP/analogs & derivatives , NADP/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
3.
Molecules ; 24(18)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533249

ABSTRACT

Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Asparagales/chemistry , Calcium Signaling/drug effects , Isoflavones/pharmacology , Plant Extracts/pharmacology , Plant Roots/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cell Survival/drug effects , Chemical Fractionation , Cytokines/metabolism , Humans , Isoflavones/chemistry , Isoflavones/isolation & purification , Lipopolysaccharides/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL