Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
Cell Rep ; 43(2): 113705, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307025

ABSTRACT

Nerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr-/- mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr-/- mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr-/- mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance.


Subject(s)
Receptor, Nerve Growth Factor , Receptors, Nerve Growth Factor , Animals , Mice , Autoantibodies , Dendritic Cells, Follicular , Germinal Center
3.
Nat Aging ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849535

ABSTRACT

The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.

4.
Mol Cell Oncol ; 8(5): 1979370, 2021.
Article in English | MEDLINE | ID: mdl-34859142

ABSTRACT

The identification of the Rag GTPases initiated the deciphering of the molecular puzzle of nutrient signaling to the mechanistic target of rapamycin (mTOR), and spurred interest in targeting this pathway to combat human disease. Recent mouse genetic studies have provided pathophysiological insight and pointed to potential indications for inhibitors of the Rag GTPase pathway.

5.
Cell Rep ; 36(2): 109372, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260908

ABSTRACT

B lymphocytes are exquisitely sensitive to fluctuations in nutrient signaling by the Rag GTPases, and 15% of follicular lymphomas (FLs) harbor activating mutations in RRAGC. Hence, a potential therapeutic approach against malignant B cells is to inhibit Rag GTPase signaling, but because such inhibitors are still to be developed, efficacy and safety remain unknown. We generated knockin mice expressing a hypomorphic variant of RagC (Q119L); RagCQ119L/+ mice are viable and show attenuated nutrient signaling. B lymphocyte activation is cell-intrinsically impaired in RagCQ119L/+ mice, which also show significant suppression of genetically induced lymphomagenesis and autoimmunity. Surprisingly, no overt systemic trade-offs or phenotypic alterations caused by partial suppression of nutrient signaling are seen in other organs, and RagCQ119L/+ mice show normal longevity and normal age-dependent health decline. These results support the efficacy and safety of moderate inhibition of nutrient signaling against pathological B cells.


Subject(s)
B-Lymphocytes/immunology , Carcinogenesis/immunology , Carcinogenesis/pathology , Lymphoma/immunology , Lymphoma/pathology , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , Animals , Female , Gene Knock-In Techniques , Heterozygote , Immunity, Humoral , Longevity , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Mutant Strains , Mutation/genetics
6.
Nat Commun ; 12(1): 3660, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135321

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) integrates cellular nutrient signaling and hormonal cues to control metabolism. We have previously shown that constitutive nutrient signaling to mTORC1 by means of genetic activation of RagA (expression of GTP-locked RagA, or RagAGTP) in mice resulted in a fatal energetic crisis at birth. Herein, we rescue neonatal lethality in RagAGTP mice and find morphometric and metabolic alterations that span glucose, lipid, ketone, bile acid and amino acid homeostasis in adults, and a median lifespan of nine months. Proteomic and metabolomic analyses of livers from RagAGTP mice reveal a failed metabolic adaptation to fasting due to a global impairment in PPARα transcriptional program. These metabolic defects are partially recapitulated by restricting activation of RagA to hepatocytes, and revert by pharmacological inhibition of mTORC1. Constitutive hepatic nutrient signaling does not cause hepatocellular damage and carcinomas, unlike genetic activation of growth factor signaling upstream of mTORC1. In summary, RagA signaling dictates dynamic responses to feeding-fasting cycles to tune metabolism so as to match the nutritional state.


Subject(s)
Fasting/metabolism , Liver/metabolism , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , Animals , Disease Models, Animal , Glucose/metabolism , Homeostasis , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Monomeric GTP-Binding Proteins/genetics , Nutrients/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Phenotype , Proteomics , Signal Transduction/drug effects , Sirolimus/administration & dosage , Sirolimus/pharmacology , Transcription, Genetic/drug effects , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism
7.
Nat Cancer ; 1: 653-664, 2020.
Article in English | MEDLINE | ID: mdl-33569544

ABSTRACT

Cancer cells adapt their metabolic activities to support growth and proliferation. However, increased activity of metabolic enzymes is not usually considered an initiating event in the malignant process. Here, we investigate the possible role of the enzyme serine hydroxymethyltransferase-2 (SHMT2) in lymphoma initiation. SHMT2 localizes to the most frequent region of copy number gains at chromosome 12q14.1 in lymphoma. Elevated expression of SHMT2 cooperates with BCL2 in lymphoma development; loss or inhibition of SHMT2 impairs lymphoma cell survival. SHMT2 catalyzes the conversion of serine to glycine and produces an activated one-carbon unit that can be used to support S-adenosyl methionine synthesis. SHMT2 induces changes in DNA and histone methylation patterns leading to promoter silencing of previously uncharacterized mutational genes, such as SASH1 and PTPRM. Together, our findings reveal that amplification of SHMT2 in cooperation with BCL2 is sufficient in the initiation of lymphomagenesis through epigenetic tumor suppressor silencing.


Subject(s)
Glycine Hydroxymethyltransferase , Lymphoma , Cell Proliferation/genetics , Epigenesis, Genetic , Glycine Hydroxymethyltransferase/genetics , Humans , Lymphoma/genetics , Proto-Oncogene Proteins c-bcl-2/genetics
8.
Cancer Res ; 67(15): 7350-7, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17671205

ABSTRACT

Cellular senescence is emerging as an important in vivo anticancer response elicited by multiple stresses, including currently used chemotherapeutic drugs. Nutlin-3a is a recently discovered small-molecule antagonist of the p53-destabilizing protein murine double minute-2 (MDM2) that induces cell cycle arrest and apoptosis in cancer cells with functional p53. Here, we report that nutlin-3a induces cellular senescence in murine primary fibroblasts, oncogenically transformed fibroblasts, and fibrosarcoma cell lines. No evidence of drug-induced apoptosis was observed in any case. Nutlin-induced senescence was strictly dependent on the presence of functional p53 as revealed by the fact that cells lacking p53 were completely insensitive to the drug, whereas cells lacking the tumor suppressor alternative reading frame product of the CDKN2A locus underwent irreversible cell cycle arrest. Interestingly, irreversibility was achieved in neoplastic cells faster than in their corresponding parental primary cells, suggesting that nutlin-3a and oncogenic signaling cooperate in activating p53. Our current results suggest that senescence could be a major cellular outcome of cancer therapy by antagonists of the p53-MDM2 interaction, such as nutlin-3a.


Subject(s)
Cellular Senescence , Fibroblasts/metabolism , Fibrosarcoma/pathology , Imidazoles/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/physiology , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/physiology , Animals , Cell Cycle , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/physiology , Fibroblasts/cytology , Fibrosarcoma/metabolism , Mice , Mice, Knockout , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
9.
Nat Metab ; 1(8): 775-789, 2019 08.
Article in English | MEDLINE | ID: mdl-31579886

ABSTRACT

The humoral immune response demands that B cells undergo a sudden anabolic shift and high cellular nutrient levels which are required to sustain the subsequent proliferative burst. Follicular lymphoma (FL) originates from B cells that have participated in the humoral response, and 15% of FL samples harbor point, activating mutations in RRAGC, an essential activator of mTORC1 downstream of the sensing of cellular nutrients. The impact of recurrent RRAGC mutations in B cell function and lymphoma is unexplored. RRAGC mutations, targeted to the endogenous locus in mice, confer a partial insensitivity to nutrient deprivation, but strongly exacerbate B cell responses and accelerate lymphomagenesis, while creating a selective vulnerability to pharmacological inhibition of mTORC1. This moderate increase in nutrient signaling synergizes with paracrine cues from the supportive T cell microenvironment that activates B cells via the PI3K-Akt-mTORC1 axis. Hence, Rragc mutations sustain induced germinal centers and murine and human FL in the presence of decreased T cell help. Our results support a model in which activating mutations in the nutrient signaling pathway foster lymphomagenesis by corrupting a nutrient-dependent control over paracrine signals from the T cell microenvironment.


Subject(s)
GTP Phosphohydrolases/metabolism , Lymphocyte Activation , Lymphoma, Follicular/drug therapy , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Humans , Lymphoma, Follicular/pathology , Mice , Mice, Transgenic
10.
Cancer Discov ; 7(1): 38-53, 2017 01.
Article in English | MEDLINE | ID: mdl-27733359

ABSTRACT

Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas. SIGNIFICANCE: Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
CREB-Binding Protein/genetics , Germinal Center/metabolism , Histone Deacetylases/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Acetylation , Animals , CREB-Binding Protein/metabolism , Cell Line, Tumor , Enhancer Elements, Genetic , Gene Knockout Techniques , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Neoplasm Transplantation , Nuclear Receptor Co-Repressor 2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Transcription, Genetic
11.
Nat Neurosci ; 19(3): 443-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26780512

ABSTRACT

Dyshomeostasis of amyloid-ß peptide (Aß) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aß appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aß-induced depression. Mechanistically, Aß triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN knock-in mouse lacking the PDZ motif, and a cell-permeable interfering peptide, we found that this mechanism is crucial for Aß-induced synaptic toxicity and cognitive dysfunction. Our results provide fundamental information on the molecular mechanisms of Aß-induced synaptic malfunction and may offer new mechanism-based therapeutic targets to counteract downstream Aß signaling.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Cognition Disorders/physiopathology , PTEN Phosphohydrolase/physiology , Synaptic Transmission/physiology , Alzheimer Disease/complications , Amyloid beta-Peptides/toxicity , Animals , Cognition Disorders/complications , Disease Models, Animal , Gene Knock-In Techniques , Mice , Mice, Transgenic , PDZ Domains/genetics , PDZ Domains/physiology , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , Primary Cell Culture , Rats , Synaptic Transmission/drug effects
12.
Cell Metab ; 21(4): 558-70, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25817535

ABSTRACT

Genetic inhibition of PI3K signaling increases energy expenditure, protects from obesity and metabolic syndrome, and extends longevity. Here, we show that two pharmacological inhibitors of PI3K, CNIO-PI3Ki and GDC-0941, decrease the adiposity of obese mice without affecting their lean mass. Long-term treatment of obese mice with low doses of CNIO-PI3Ki reduces body weight until reaching a balance that is stable for months as long as the treatment continues. CNIO-PI3Ki treatment also ameliorates liver steatosis and decreases glucose serum levels. The above observations have been recapitulated in independent laboratories and using different oral formulations of CNIO-PI3Ki. Finally, daily oral treatment of obese rhesus monkeys for 3 months with low doses of CNIO-PI3Ki decreased their adiposity and lowered their serum glucose levels, in the absence of detectable toxicities. Therefore, pharmacological inhibition of PI3K is an effective and safe anti-obesity intervention that could reverse the negative effects of metabolic syndrome in humans.


Subject(s)
Adiposity/drug effects , Imidazoles/pharmacology , Indazoles/pharmacology , Metabolic Syndrome/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Pyrazines/pharmacology , Sulfonamides/pharmacology , Adiposity/physiology , Animals , Histological Techniques , Immunoblotting , Liver/drug effects , Liver/pathology , Macaca mulatta , Mass Spectrometry , Mice, Obese
13.
Nat Med ; 21(10): 1199-208, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26366710

ABSTRACT

The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.


Subject(s)
DNA-Binding Proteins/physiology , Gene Expression Regulation/physiology , Lymphoma, B-Cell/etiology , Neoplasm Proteins/physiology , Animals , B-Lymphocytes/pathology , DNA-Binding Proteins/genetics , Humans , Mice , Mice, Knockout , Mutation , Neoplasm Proteins/genetics
14.
Antioxid Redox Signal ; 21(18): 2498-514, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-24892215

ABSTRACT

AIMS: A recent study conducted in mice reported that liver-specific knockout of tumor suppressor Pten augments nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcriptional activity. Here, we further investigated how phosphatase and tensin homolog deleted on chromosome 10 (PTEN) controls NRF2 and the relevance of this pathway in human carcin ogenesis. RESULTS: Drug and genetic targeting to PTEN and phosphoproteomics approaches indicated that PTEN leads to glycogen synthase kinase-3 (GSK-3)-mediated phosphorylation of NRF2 at residues Ser(335) and Ser(338) and subsequent beta-transducin repeat containing protein (ß-TrCP)-dependent but Kelch-like ECH-associated protein 1 (KEAP1)-independent degradation. Rescue experiments in PTEN-deficient cells and xerographs in athymic mice indicated that loss of PTEN leads to increased NRF2 signature which provides a proliferating and tumorigenic advantage. Tissue microarrays from endometrioid carcinomas showed that 80% of PTEN-negative tumors expressed high levels of NRF2 or its target heme oxygenase-1 (HO-1). INNOVATION: These results uncover a new mechanism of oncogenic activation of NRF2 by loss of its negative regulation by PTEN/GSK-3/ß-TrCP that may be relevant to a large number of tumors, including endometrioid carcinomas. CONCLUSION: Increased activity of NRF2 due to loss of PTEN is instrumental in human carcinogenesis and represents a novel therapeutic target.


Subject(s)
Carcinogenesis/genetics , Glycogen Synthase Kinase 3/genetics , NF-E2-Related Factor 2/genetics , PTEN Phosphohydrolase/genetics , Animals , Cell Line, Tumor , Glycogen Synthase Kinase 3/metabolism , Heme Oxygenase-1/metabolism , Humans , Liver/metabolism , Mice , NF-E2-Related Factor 2/metabolism , PTEN Phosphohydrolase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
15.
Cell Rep ; 8(6): 1677-1685, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25242333

ABSTRACT

The long-term risk of malignancy associated with stem cell therapies is a significant concern in the clinical application of this exciting technology. We report a cancer-selective strategy to enhance the safety of stem cell therapies. Briefly, using a cell engineering approach, we show that aggressive cancers derived from human or murine induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are strikingly sensitive to temporary MYC blockade. On the other hand, differentiated tissues derived from human or mouse iPSCs can readily tolerate temporary MYC inactivation. In cancer cells, endogenous MYC is required to maintain the metabolic and epigenetic functions of the embryonic and cancer-specific pyruvate kinase M2 isoform (PKM2). In summary, our results implicate PKM2 in cancer's increased MYC dependence and indicate dominant MYC inhibition as a cancer-selective fail-safe for stem cell therapies.


Subject(s)
Cell Engineering , Cell- and Tissue-Based Therapy/standards , Induced Pluripotent Stem Cells/cytology , Animals , Carrier Proteins/metabolism , Cell Line , Dopaminergic Neurons/cytology , Dopaminergic Neurons/diagnostic imaging , Female , Humans , Induced Pluripotent Stem Cells/transplantation , Magnetic Resonance Imaging , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Neoplasms/therapy , Neurogenesis , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Radiography , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins
16.
Trends Endocrinol Metab ; 24(4): 184-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23245767

ABSTRACT

Recent reports on mice with systemic overexpression of the tumor-suppressor PTEN (phosphatase and tensin homolog) have expanded our understanding of its physiological functions. Pten transgenic mice present increased energy expenditure, decreased adiposity, improved insulin sensitivity upon high-fat feeding or with aging, and extended lifespan. This has led to new mechanistic insights about the role of PTEN in metabolism. Interestingly, PTEN promotes oxidative phosphorylation and decreases glycolysis, thus preventing the metabolic reprogramming characteristic of cancer cells, which might be relevant to PTEN-mediated cancer protection. PTEN also upregulates UCP1 expression in brown adipocytes, which enhances their nutrient burning capacity and decreases adiposity and associated pathologies. The newly discovered effects of PTEN on metabolism open new avenues for exploration relevant to cancer, obesity, diabetes, and aging.


Subject(s)
Aging/metabolism , Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Aging/genetics , Animals , Humans , Neoplasms/genetics , PTEN Phosphohydrolase/genetics
17.
Cell Metab ; 15(3): 382-94, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22405073

ABSTRACT

Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpß form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.


Subject(s)
Adipose Tissue, Brown/metabolism , Energy Metabolism/physiology , Longevity/physiology , PTEN Phosphohydrolase/metabolism , Animals , Calorimetry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Energy Metabolism/genetics , Imidazoles/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Longevity/genetics , Mice , Mice, Transgenic , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , PTEN Phosphohydrolase/genetics , Pyrazines/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Uncoupling Protein 1
18.
Cell Cycle ; 10(7): 1152-61, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21389785

ABSTRACT

Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Disease Susceptibility/metabolism , Gene Expression Profiling/methods , Neoplasms/diagnosis , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/blood , Ataxia Telangiectasia/blood , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia Mutated Proteins , Checkpoint Kinase 2 , Cyclin-Dependent Kinase Inhibitor p21/blood , Disease Susceptibility/blood , Gene Dosage/genetics , Gene Expression Regulation/physiology , Gene Expression Regulation/radiation effects , Humans , Li-Fraumeni Syndrome/blood , Li-Fraumeni Syndrome/metabolism , Mice , Nuclear Proteins/blood , Proto-Oncogene Proteins/blood , Reverse Transcriptase Polymerase Chain Reaction/methods , T-Lymphocytes/metabolism
19.
PLoS One ; 4(5): e5475, 2009.
Article in English | MEDLINE | ID: mdl-19421407

ABSTRACT

Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.


Subject(s)
Cell Cycle Proteins/physiology , Cellular Senescence , DNA-Binding Proteins/physiology , Fibrosarcoma/prevention & control , Genes, ras/physiology , Lung Neoplasms/prevention & control , Protein Serine-Threonine Kinases/physiology , Tumor Suppressor Protein p53/physiology , Tumor Suppressor Proteins/physiology , Adenoma/metabolism , Adenoma/pathology , Adenoma/prevention & control , Animals , Ataxia Telangiectasia Mutated Proteins , DNA Damage , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosarcoma/chemically induced , Fibrosarcoma/metabolism , Humans , Immunoenzyme Techniques , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Methylcholanthrene/toxicity , Mice , Mice, Knockout , Phosphorylation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL