Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
New Phytol ; 240(2): 597-612, 2023 10.
Article in English | MEDLINE | ID: mdl-37548040

ABSTRACT

Here, we report the characterization of a plant RNA methyltransferase, orthologous to yeast trimethylguanosine synthase1 (Tgs1p) and whose downregulation was associated with apomixis in Paspalum grasses. Using phylogenetic analyses and yeast complementation, we determined that land plant genomes all encode a conserved, specific TGS1 protein. Next, we studied the role of TGS1 in female reproduction using reporter lines and loss-of-function mutants in Arabidopsis thaliana. pAtTGS1:AtTGS1 reporters showed a dynamic expression pattern. They were highly active in the placenta and ovule primordia at emergence but, subsequently, showed weak signals in the nucellus. Although expressed throughout gametophyte development, activity became restricted to the female gamete and was also detected after fertilization during embryogenesis. TGS1 depletion altered the specification of the precursor cells that give rise to the female gametophytic generation and to the sporophyte, resulting in the formation of a functional aposporous-like lineage. Our results indicate that TGS1 participates in the mechanisms restricting cell fate acquisition to a single cell at critical transitions throughout the female reproductive lineage and, thus, expand our current knowledge of the mechanisms governing female reproductive fate in plants.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Saccharomyces cerevisiae , Phylogeny , Mutation/genetics , Ovule/metabolism , Germ Cells , Gene Expression Regulation, Plant
2.
J Exp Bot ; 74(10): 3074-3093, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36812152

ABSTRACT

Pseudogamous apomixis in Paspalum simplex generates seeds with embryos genetically identical to the mother plant and endosperms deviating from the canonical 2(maternal):1(paternal) parental genome contribution into a maternal excess 4m:1p genome ratio. In P. simplex, the gene homologous to that coding for subunit 3 of the ORIGIN OF RECOGNITION COMPLEX (PsORC3) exists in three isogenic forms: PsORC3a is apomixis specific and constitutively expressed in developing endosperm whereas PsORCb and PsORCc are up-regulated in sexual endosperms and silenced in apomictic ones. This raises the question of how the different arrangement and expression profiles of these three ORC3 isogenes are linked to seed development in interploidy crosses generating maternal excess endosperms. We demonstrate that down-regulation of PsORC3b in sexual tetraploid plants is sufficient to restore seed fertility in interploidy 4n×2n crosses and, in turn, its expression level at the transition from proliferating to endoreduplication endosperm developmental stages dictates the fate of these seeds. Furthermore, we show that only when being maternally inherited can PsORC3c up-regulate PsORC3b. Our findings lay the basis for an innovative route-based on ORC3 manipulation-to introgress the apomictic trait into sexual crops and overcome the fertilization barriers in interploidy crosses.


Subject(s)
Endosperm , Paspalum , Endosperm/genetics , Paspalum/genetics , Seeds/genetics
3.
BMC Genomics ; 22(1): 185, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726667

ABSTRACT

BACKGROUND: Apomixis, an asexual mode of plant reproduction, is a genetically heritable trait evolutionarily related to sexuality, which enables the fixation of heterozygous genetic combinations through the development of maternal seeds. Recently, reference floral transcriptomes were generated from sexual and apomictic biotypes of Paspalum notatum, one of the most well-known plant models for the study of apomixis. However, the transcriptome dynamics, the occurrence of apomixis vs. sexual expression heterochronicity across consecutive developmental steps and the orientation of transcription (sense/antisense) remain unexplored. RESULTS: We produced 24 Illumina TruSeq®/ Hiseq 1500 sense/antisense floral transcriptome libraries covering four developmental stages (premeiosis, meiosis, postmeiosis, and anthesis) in biological triplicates, from an obligate apomictic and a full sexual genotype. De novo assemblies with Trinity yielded 103,699 and 100,114 transcripts for the apomictic and sexual samples respectively. A global comparative analysis involving reads from all developmental stages revealed 19,352 differentially expressed sense transcripts, of which 13,205 (68%) and 6147 (32%) were up- and down-regulated in apomictic samples with respect to the sexual ones. Interestingly, 100 differentially expressed antisense transcripts were detected, 55 (55%) of them up- and 45 (45%) down-regulated in apomictic libraries. A stage-by-stage comparative analysis showed a higher number of differentially expressed candidates due to heterochronicity discrimination: the highest number of differential sense transcripts was detected at premeiosis (23,651), followed by meiosis (22,830), postmeiosis (19,100), and anthesis (17,962), while the highest number of differential antisense transcripts were detected at anthesis (495), followed by postmeiosis (164), meiosis (120) and premeiosis (115). Members of the AP2, ARF, MYB and WRKY transcription factor families, as well as the auxin, jasmonate and cytokinin plant hormone families appeared broadly deregulated. Moreover, the chronological expression profile of several well-characterized apomixis controllers was examined in detail. CONCLUSIONS: This work provides a quantitative sense/antisense gene expression catalogue covering several subsequent reproductive developmental stages from premeiosis to anthesis for apomictic and sexual P. notatum, with potential to reveal heterochronic expression between reproductive types and discover sense/antisense mediated regulation. We detected a contrasting transcriptional and hormonal control in apomixis and sexuality as well as specific sense/antisense modulation occurring at the onset of parthenogenesis.


Subject(s)
Apomixis , Paspalum , Apomixis/genetics , Gene Expression Regulation, Plant , Paspalum/genetics , Plant Proteins/genetics , RNA, Antisense/genetics , Seeds/metabolism , Transcriptome
4.
BMC Genomics ; 20(1): 487, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31195966

ABSTRACT

BACKGROUND: Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. RESULTS: The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3-8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. CONCLUSIONS: This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis.


Subject(s)
Apomixis/genetics , Paspalum/genetics , Paspalum/physiology , RNA, Small Untranslated/genetics , RNA-Seq , Flowers/genetics , MicroRNAs/genetics , Transcriptome/genetics
5.
Yeast ; 36(9): 541-556, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31254359

ABSTRACT

Xylose is the second most abundant sugar in nature. Its efficient fermentation has been considered as a critical factor for a feasible conversion of renewable biomass resources into biofuels and other chemicals. The yeast Saccharomyces cerevisiae is of exceptional industrial importance due to its excellent capability to ferment sugars. However, although S. cerevisiae is able to ferment xylulose, it is considered unable to metabolize xylose, and thus, a lot of research has been directed to engineer this yeast with heterologous genes to allow xylose consumption and fermentation. The analysis of the natural genetic diversity of this yeast has also revealed some nonrecombinant S. cerevisiae strains that consume or even grow (modestly) on xylose. The genome of this yeast has all the genes required for xylose transport and metabolism through the xylose reductase, xylitol dehydrogenase, and xylulokinase pathway, but there seems to be problems in their kinetic properties and/or required expression. Self-cloning industrial S. cerevisiae strains overexpressing some of the endogenous genes have shown interesting results, and new strategies and approaches designed to improve these S. cerevisiae strains for ethanol production from xylose will also be presented in this review.

6.
Ann Bot ; 123(5): 901-915, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30576402

ABSTRACT

BACKGROUND AND AIMS: Apomixis is an asexual reproductive mode via seeds that generate maternal clonal progenies. Although apomixis in grasses is mainly expressed at the polyploid level, some natural diploid genotypes of Paspalum rufum produce aposporous embryo sacs in relatively high proportions and are even able to complete apomixis under specific conditions. However, despite the potential for apomixis, sexuality prevails in diploids, and apomixis expression is repressed for an as yet undetermind reason. Apomixis is thought to derive from a deregulation of one or a few components of the sexual pathway that could be triggered by polyploidy and/or hybridization. The objectives of this work were to characterize and compare the reproductive development and the timing of apospory initial (AI) emergence between diploid genotypes with potential for apomixis and facultative apomictic tetraploid cytotypes of P. rufum. METHODS: Reproductive characterization was performed by cytoembryological observations of cleared ovaries and anthers during all reproductive development steps and by quantitative evaluation of the ovule growth parameters. KEY RESULTS: Cytoembryological observations showed that in diploids, both female and male reproductive development is equally synchronized, but in tetraploids, megasporogenesis and early megagametogenesis are delayed with respect to microsporogenesis and early microgametogenesis. This delay was also seen when ovary growth was taken as a reference parameter. The analysis of the onset of AIs revealed that they emerge during different developmental periods depending on the ploidy level. In diploids, the AIs appeared along with the tetrad (or triad) of female meiocytes, but in tetraploids they appeared earlier, at the time of the megaspore mother cell. In both cytotypes, AIs can be seen even during megagametogenesis. CONCLUSIONS: Overall observations reveal that female sexual reproductive development is delayed in tetraploids as compared with diploid genotypes, mainly at meiosis. In tetraploids, AIs appear at earlier sexual developmental stages than in diploids, and they accumulate up to the end of megasporogenesis. The longer extension of megasporogenesis in tetraploids could favour AI emergence and also apomixis success.


Subject(s)
Apomixis , Paspalum , Diploidy , Humans , Polyploidy , Seeds , Tetraploidy
7.
BMC Genomics ; 18(1): 318, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28431521

ABSTRACT

BACKGROUND: Paspalum notatum Flügge is a subtropical grass native to South America, which includes sexual diploid and apomictic polyploid biotypes. In the past decade, a number of apomixis-associated genes were discovered in this species through genetic mapping and differential expression surveys. However, the scarce information on Paspalum sequences available in public databanks limited annotations and functional predictions for these candidates. RESULTS: We used a long-read 454/Roche FLX+ sequencing strategy to produce robust reference transcriptome datasets from florets of sexual and apomictic Paspalum notatum genotypes and delivered a list of transcripts showing differential representation in both reproductive types. Raw data originated from floral samples collected from premeiosis to anthesis was assembled in three libraries: i) sexual (SEX), ii) apomictic (APO) and iii) global (SEX + APO). A group of physically-supported Paspalum mRNA and EST sequences matched with high level of confidence to both sexual and apomictic libraries. A preliminary trial allowed discovery of the whole set of putative alleles/paralogs corresponding to 23 previously identified apomixis-associated candidate genes. Moreover, a list of 3,732 transcripts and several co-expression and protein -protein interaction networks associated with apomixis were identified. CONCLUSIONS: The use of the 454/Roche FLX+ transcriptome database will allow the detailed characterization of floral alleles/paralogs of apomixis candidate genes identified in prior and future work. Moreover, it was used to reveal additional candidate genes differentially represented in apomictic and sexual flowers. Gene ontology (GO) analyses of this set of transcripts indicated that the main molecular pathways altered in the apomictic genotype correspond to specific biological processes, like biotic and abiotic stress responses, growth, development, cell death and senescence. This data collection will be of interest to the plant reproduction research community and, particularly, to Paspalum breeding projects.


Subject(s)
Paspalum/genetics , Transcriptome , Expressed Sequence Tags , Flowers/genetics , Genotype , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Paspalum/growth & development , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/chemistry , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Sequence Analysis, RNA
8.
J Exp Bot ; 67(6): 1965-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26842983

ABSTRACT

Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.


Subject(s)
Apomixis/genetics , Gene Silencing , Paspalum/genetics , Pseudogenes , Sequence Homology, Nucleic Acid , Arabidopsis/genetics , Base Sequence , Chromosome Mapping , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , In Situ Hybridization , Mutation/genetics , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction/genetics , Sequence Alignment , Transcription, Genetic
9.
Genetica ; 143(1): 113-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25633099

ABSTRACT

Peanut is an allotetraploid (2n = 2x = 40, AABB) of recent origin. Arachis duranensis and A. ipaënsis, the most probable diploid ancestors of the cultigen, and several other wild diploid species with different genomes (A, B, D, F and K) are used in peanut breeding programs. However, the genomic relationships and the evolutionary pathways of genome differentiation of these species are poorly understood. We performed a sequence-based phylogenetic analysis of the L1 reverse transcriptase and estimated its representation and chromosome distribution in species of five genomes and three karyotype groups with the aim of contributing to the knowledge of the genomic structure and evolution of peanut and wild diploid relatives. All the isolated rt fragments were found to belong to plant L1 lineage and were named ALI. The best supported phylogenetic groups were not concordant with the genomes or karyotype groups. The copy number of ALI sequences was higher than the expected one for plants and directly related to genome size. FISH experiments revealed that ALI is mainly located on the euchromatin of interstitial and distal regions of most chromosome arms. Divergence of ALI sequences would have occurred before the differentiation of the genomes and karyotype groups of Arachis. The representation and chromosome distribution of ALI in peanut was almost additive of those of the parental species suggesting that the spontaneous hybridization of the two parental species of peanut followed by chromosome doubling would not have induced a significant burst of ALI transposition.


Subject(s)
Arachis/classification , Arachis/genetics , Chromosome Mapping , Chromosomes, Plant , Long Interspersed Nucleotide Elements , RNA-Directed DNA Polymerase/genetics , Cluster Analysis , Computational Biology , DNA, Plant , Gene Dosage , Genome Size , Genome, Plant , In Situ Hybridization, Fluorescence , Phylogeny , Sequence Analysis, DNA
10.
Plant Mol Biol ; 84(4-5): 479-95, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24146222

ABSTRACT

The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue.


Subject(s)
Gene Expression Regulation, Plant , Paspalum/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Amino Acid Sequence , Apomixis/genetics , Gene Expression Profiling , Genotype , In Situ Hybridization , Isoenzymes/genetics , Molecular Sequence Data , Paspalum/classification , Phylogeny , Protein Kinases/classification , Reverse Transcriptase Polymerase Chain Reaction , Seeds/embryology , Seeds/genetics , Sequence Homology, Amino Acid
11.
BMC Plant Biol ; 14: 297, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25404464

ABSTRACT

BACKGROUND: In flowering plants, apomixis (asexual reproduction via seeds) is widely believed to result from failure of key regulators of the sexual female reproductive pathway. In the past few years, both differential display and RNA-seq comparative approaches involving reproductive organs of sexual plants and their apomictic counterparts have yielded extensive lists of candidate genes. Nevertheless, only a limited number of these genes have been functionally characterized, with few clues consequently available for understanding the molecular control of apomixis. We have previously identified several cDNA fragments with high similarity to genes involved in RNA biology and with differential amplification between sexual and apomictic Paspalum notatum plants. Here, we report the characterization of one of these candidates, namely, N69 encoding a protein of the S-adenosyl-L-methionine-dependent methyltransferases superfamily. The purpose of this work was to extend the N69 cDNA sequence and to characterize its expression at different developmental stages in both sexual and apomictic individuals. RESULTS: Molecular characterization of the N69 cDNA revealed homology with genes encoding proteins similar to yeast and mammalian trimethylguanosine synthase/PRIP-interacting proteins. These proteins play a dual role as ERK2-controlled transcriptional coactivators and mediators of sn(o)RNA and telomerase RNA cap trimethylation, and participate in mammals and yeast development. The N69-extended sequence was consequently renamed PnTgs1-like. Expression of PnTgs1-like during reproductive development was significantly higher in floral organs of sexual genotypes compared with apomicts. This difference was not detected in vegetative tissues. In addition, expression levels in reproductive tissues of several genotypes were negatively correlated with facultative apomixis rates. Moreover, in situ hybridization observations revealed that PnTgs1-like expression is relatively higher in ovules of sexual plants throughout development, from premeiosis to maturity. Tissues where differential expression is detected include nucellar cells, the site of aposporous initials differentiation in apomictic genotypes. CONCLUSIONS: Our results indicate that PnTgs1-like (formerly N69) encodes a trimethylguanosine synthase-like protein whose function in mammals and yeast is critical for development, including reproduction. Our findings also suggest a pivotal role for this candidate gene in nucellar cell fate, as its diminished expression is correlated with initiation of the apomictic pathway in plants.


Subject(s)
Apomixis/genetics , Gene Expression Regulation, Plant , Paspalum/enzymology , Plant Proteins/genetics , Base Sequence , DNA, Complementary/genetics , Genotype , In Situ Hybridization , Methionine/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Sequence Data , Ovule , Paspalum/genetics , Paspalum/growth & development , Paspalum/physiology , Plant Proteins/metabolism , Seeds/genetics , Sequence Analysis, DNA
12.
J Exp Bot ; 65(22): 6411-24, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25180110

ABSTRACT

Apomixis, a clonal plant reproduction by seeds, is controlled in Paspalum spp. by a single locus which is blocked in terms of recombination. Partial sequence analysis of the apomixis locus revealed structural features of heterochromatin, namely the presence of repetitive elements, gene degeneration, and de-regulation. To test the epigenetic control of apomixis, a study on the distribution of cytosine methylation at the apomixis locus and the effect of artificial DNA demethylation on the mode of reproduction was undertaken in two apomictic Paspalum species. The 5-methylcytosine distribution in the apomixis-controlling genomic region was studied in P. simplex by methylation-sensitive restriction fragment length polymorphism (RFLP) analysis and in P. notatum by fluorescene in situ hybridization (FISH). The effect of DNA demethylation was studied on the mode of reproduction of P. simplex by progeny test analysis of apomictic plants treated with the demethylating agent 5'-azacytidine. A high level of cytosine methylation was detected at the apomixis-controlling genomic region in both species. By analysing a total of 374 open pollination progeny, it was found that artificial demethylation had little or no effect on apospory, whereas it induced a significant depression of parthenogenesis. The results suggested that factors controlling repression of parthenogenesis might be inactivated in apomictic Paspalum by DNA methylation.


Subject(s)
Apomixis/genetics , DNA Methylation , Epigenesis, Genetic , Paspalum/genetics , 5-Methylcytosine/metabolism , Azacitidine/pharmacology , Chromosomes, Artificial, Bacterial/metabolism , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , In Situ Hybridization, Fluorescence , Pollination/drug effects , Polymorphism, Restriction Fragment Length
13.
Ann Bot ; 113(7): 1211-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24739230

ABSTRACT

BACKGROUND AND AIMS: The diploid cytotype of Paspalum rufum (Poaceae) reproduces sexually and is self-sterile; however, recurrent autopolyploidization through 2n + n fertilization and the ability for reproduction via apomixis have been documented in one genotype of the species. The objectives of this work were to analyse the variation in the functionality of apomixis components in diploid genotypes of P. rufum and to identify individuals with contrasting reproductive behaviours. METHODS: Samples of five individuals from each of three natural populations of P. rufum (designated R2, R5 and R6) were used. Seeds were obtained after open pollination, selfing, conspecific interploidy crosses and interspecific interploidy self-pollination induction. The reproductive behaviour of each plant was determined by using the flow cytometric seed screen (FCSS) method. Embryo sacs were cleared using a series of ethanol and methyl salicylate solutions and observed microscopically. KEY RESULTS: In open pollination, all genotypes formed seeds by sexual means and no evidence of apomeiotic reproduction was detected. However, in conspecific interploidy crosses and interspecific interploidy self-pollination induction, variations in the reproductive pathways were observed. While all plants from populations R2 and R6 formed seeds exclusively by sexual means, three genotypes from the R5 population developed seeds from both meiotic and aposporous embryo sacs, and one of them (R5#49) through the complete apomictic pathway (apospory + parthenogenesis + pseudogamy). Cytoembryological observations revealed the presence of both meiotic and aposporous embryo sacs in all the genotypes analysed, suggesting that parthenogenesis could be uncoupled from apospory in some genotypes. CONCLUSIONS: The results presented demonstrate the existence of variation in the functionality of apomixis components in natural diploid genotypes of P. rufum and have identified individuals with contrasting reproductive behaviours. Genotypes identified here can be crossed to generate segregating populations in order to study apomixis determinants at the diploid level. Moreover, analysis of their expression patterns, quantification of their transcript levels and an understanding of their regulation mechanisms could help to design new strategies for recreating apomixis in a diploid genome environment.


Subject(s)
Apomixis , Paspalum/physiology , Seeds/physiology , Diploidy , Gene Expression , Paspalum/genetics , Pollination
14.
Biotechniques ; 76(6): 285-289, 2024.
Article in English | MEDLINE | ID: mdl-38655877

ABSTRACT

Large DNA molecules (>20 kb) are difficult analytes prone to breakage during serial manipulations and cannot be 'rescued' as full-length amplicons. Accordingly, to present, modify and analyze arrays of large, single DNA molecules, we created an easily realizable approach offering gentle confinement conditions or immobilization via spermidine condensation for controlled delivery of reagents that support live imaging by epifluorescence microscopy termed 'Gel-Stacks.' Molecules are locally confined between two hydrogel surfaces without covalent tethering to support time-lapse imaging and multistep workflows that accommodate large DNA molecules. With a thin polyacrylamide gel layer covalently bound to a glass surface as the base and swappable, reagent-infused, agarose slabs on top, DNA molecules are stably presented for imaging during reagent delivery by passive diffusion.


Gel-Stacks technology provides multiple non-covalent molecular presentation modes, coupled with an unusually facile reagent delivery system designed for large-scale analytes, enhancing live imaging and manipulation. Enhanced further by modeling and software, Gel-Stacks technology becomes adaptable to a broad range of experimental applications.


Subject(s)
DNA , DNA/chemistry , Microscopy, Fluorescence/methods , Hydrogels/chemistry , Immobilized Nucleic Acids/chemistry , Acrylic Resins/chemistry , Spermidine/chemistry , Single Molecule Imaging/methods
15.
Int J Sex Health ; 36(1): 46-58, 2024.
Article in English | MEDLINE | ID: mdl-38600899

ABSTRACT

This article analyzes some aspects of Chilean young people's (aged 15-29) sex life according to sex and socioeconomic background. Using data from the Tenth National Youth Survey, descriptive and inferential analyses were carried out to test possible differences in sexual practices according to these variables. Results show that young Chileans are increasingly diversifying sexual practices. Differences in age at the first sexual relationship between men and women are also becoming less clear; likewise, differences found by socioeconomic background were also weak, suggesting that some practices are common across different groups of youth. The most significant differences found concern certain practices (oral and anal sex), the number of sexual partners men and women have, and the type of relationship (romantic partner, friend, acquaintance) in which sexual encounters take place. We conclude that young people's sexual practices are increasingly being oriented toward self-exploration and personal satisfaction, and less toward the (traditional) goal of forming a family. Nonetheless, the existence of a "double standard" regarding sexual morals can still account for contrasting behaviors according to sex, suggesting the persistence of a gendered normativity. Also, sexual exploration often occurs without adequate information, reducing youngsters' ability to reduce risks or prevent undesired consequences.

16.
Sci Data ; 11(1): 891, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152143

ABSTRACT

Paspalum notatum Flüggé is an economically important subtropical fodder grass that is widely used in the Americas. Here, we report a new chromosome-scale genome assembly and annotation of a diploid biotype collected in the center of origin of the species. Using Oxford Nanopore long reads, we generated a 557.81 Mb genome assembly (N50 = 56.1 Mb) with high gene completeness (BUSCO = 98.73%). Genome annotation identified 320 Mb (57.86%) of repetitive elements and 45,074 gene models, of which 36,079 have a high level of confidence. Further characterisation included the identification of 59 miRNA precursors together with their putative targets. The present work provides a comprehensive genomic resource for P. notatum improvement and a reference frame for functional and evolutionary research within the genus.


Subject(s)
Genome, Plant , Molecular Sequence Annotation , Paspalum , Paspalum/genetics , Chromosomes, Plant/genetics , MicroRNAs/genetics , Repetitive Sequences, Nucleic Acid
17.
Front Microbiol ; 15: 1419637, 2024.
Article in English | MEDLINE | ID: mdl-39044955

ABSTRACT

Introduction: Mayaro Fever (MF) is a tropical disease caused by the Mayaro virus (MAYV), with outbreaks documented in Latin America. Methods: A hospital-based fever surveillance in Leticia, Colombian Amazon, collected sera from 1,460 patients aged 5-89 between December 2020 and April 2023. Results: Dengue and malaria were the main diagnoses (19.4 and 5.8%, respectively), leaving 71.4% of cases unidentified after testing. Metagenomic sequencing and real-time RT-qPCR testing identified MAYV in two patients (25-year-old male and an 80-year-old female) exhibiting typical symptoms, of MF including rash, joint pain, and fever. Phylogenetics analysis of these two viruses revealed a close relationship to Peruvian strains within the MAYV D genotype. Discussion: The study of AFI in Leticia, Colombia, identified dengue as prevalent, with malaria, COVID-19, Influenza, and Zika viruses also detected. Despite extensive testing, most cases remained unexplained until metagenomic sequencing revealed MAYV, previously unseen in Colombia but known in neighboring countries. Conclusion: This study presents the first near full-length genomes of MAYV in Colombia, highlighting the need for further seroprevalence studies and enhanced surveillance to understand and control the spread of the virus in the region.

18.
Ann Bot ; 112(5): 767-87, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23864004

ABSTRACT

BACKGROUND: Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE: In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.


Subject(s)
Apomixis/physiology , Paspalum/physiology , Poaceae/physiology , Apomixis/genetics , Breeding , Chromosome Mapping , Genes, Plant/genetics , Paspalum/genetics , Poaceae/genetics , Reproduction , Signal Transduction , Transformation, Genetic
19.
GigaByte ; 2023: gigabyte93, 2023.
Article in English | MEDLINE | ID: mdl-37753479

ABSTRACT

While Bacterial Artificial Chromosomes libraries were once a key resource for the genomic community, they have been obviated, for sequencing purposes, by long-read technologies. Such libraries may now serve as a valuable resource for manipulating and assembling large genomic constructs. To enhance accessibility and comparison, we have developed a BAC restriction map database. Using information from the National Center for Biotechnology Information's cloneDB FTP site, we constructed a database containing the restriction maps for both uniquely placed and insert-sequenced BACs from 11 libraries covering the recognition sequences of the available restriction enzymes. Along with the database, we generated a set of Python functions to reconstruct the database and more easily access the information within. This data is valuable for researchers simply using BACs, as well as those working with larger sections of the genome in terms of synthetic genes, large-scale editing, and mapping.

20.
Infez Med ; 31(3): 374-383, 2023.
Article in English | MEDLINE | ID: mdl-37701377

ABSTRACT

Background: Direct-acting antivirals (DAA) were introduced to Latin America with the aim of eliminating hepatitis C (HCV) in the region. There are scarce data on the outcomes of people living with HIV and HCV treated with these medications in Colombia. This study compares the outcomes of patients with HIV-HCV co-infection and HCV mono-infection treated with DAAs. Methods: Retrospective observational study including patients ≥18 years old with HCV infection treated with DAAs from August 2017 to December 2019 in a comprehensive center in Colombia. The main outcome was sustained virologic response (SVR). Secondary outcomes included reinfection, relapse and adverse events. Results: We included 223 individuals with HCV treated with DAAs; 142 (63.6%) individuals were mono-infected and 81 (36.3%) co-infected. Genotypes 1b (49.7%) and 4 (33.9%) were the most common. Overall SVR after DAA treatment was 96.8%. Relapse rate was 2.24%, reinfection rate was 6.28% and adverse events occurred in 27.8% of cases. SVR was comparable in patients with co- and mono-infection (95% vs 97.8%, p=0.245). Conclusion: DAA were effective in mono-infected (HCV) and co-infected (HCV/HIV) patients and reinfection was high in this last group.

SELECTION OF CITATIONS
SEARCH DETAIL