Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(17): e2217070120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068239

ABSTRACT

Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium Bacillus subtilis serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of ß-sandwich subunits. The secondary structure around the intercalated N-terminal strand ß0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of Bacillaceae are located within the protomer interface.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacterial Proteins/metabolism , Bacillus subtilis/metabolism , Magnetic Resonance Spectroscopy , Protein Structure, Secondary , Molecular Chaperones/metabolism , Biofilms
2.
J Biomol NMR ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904893

ABSTRACT

Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric ß-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.

3.
Proc Natl Acad Sci U S A ; 117(47): 29684-29690, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33184177

ABSTRACT

Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein-protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor ([Formula: see text] Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein-protein interaction involved in actin filament processing and cell migration.


Subject(s)
Breast Neoplasms/drug therapy , Cell Adhesion Molecules/metabolism , DNA-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Jurkat Cells , Proline/metabolism , Protein Binding/drug effects , Zebrafish
4.
J Struct Biol ; 213(2): 107715, 2021 06.
Article in English | MEDLINE | ID: mdl-33705979

ABSTRACT

The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel ß-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.


Subject(s)
Protozoan Proteins/chemistry , Trypanosoma cruzi/chemistry , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Cell Adhesion Molecules/chemistry , Circular Dichroism , Conserved Sequence , EF Hand Motifs , Microfilament Proteins/chemistry , Models, Molecular , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Protein Conformation, alpha-Helical , Protein Structure, Secondary , Protozoan Proteins/metabolism
5.
PLoS Biol ; 16(5): e2006192, 2018 05.
Article in English | MEDLINE | ID: mdl-29782488

ABSTRACT

Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and ß2-microglobulin (ß2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to ß2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Magnetic Resonance Spectroscopy/methods , Receptors, Fc/metabolism , Allosteric Site , Crystallography, X-Ray , HEK293 Cells , Humans , Ligands
6.
Proc Natl Acad Sci U S A ; 115(13): 3237-3242, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531041

ABSTRACT

Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, ß-sheet-rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/chemistry , Biofilms/growth & development , Bacillus subtilis/chemistry , Bacterial Proteins/metabolism , Calorimetry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Metalloendopeptidases/chemistry , Microscopy, Electron , Models, Molecular , Molecular Weight , Protein Conformation , Structural Homology, Protein , Ultracentrifugation
7.
J Struct Biol ; 211(2): 107536, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32473201

ABSTRACT

Complete genome sequencing of the kinetoplastid protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryp), published in 2005, opened up new perspectives for drug development targeting Chagas disease, African sleeping sickness and Leishmaniasis, neglected diseases affecting millions of most economically disadvantaged people. Still, half of the Tritryp genes code for proteins of unknown function. Moreover, almost 50% of conserved eukaryotic protein domains are missing in the Tritryp genomes. This suggests that functional and structural characterization of proteins of unknown function could reveal novel protein folds used by the trypanosomes for common cellular processes. Furthermore, proteins without homologous counterparts in humans may provide potential targets for therapeutic intervention. Here we describe the crystal structure of the T. cruzi protein Q4D6Q6, a conserved and kinetoplastid-specific protein essential for cell viability. Q4D6Q6 is a representative of a family of 20 orthologs, all annotated as proteins of unknown function. Q4D6Q6 monomers adopt a ßßαßßαßß topology and form a propeller-like tetramer. Oligomerization was verified in solution using NMR, SAXS, analytical ultra-centrifugation and gel filtration chromatography. A rigorous search for similar structures using the DALI server revealed similarities with propeller-like structures of several different functions. Although a Q4D6Q6 function could not be inferred from such structural comparisons, the presence of an oxidized cysteine at position 69, part of a cluster with phosphorylated serines and hydrophobic residues, identifies a highly reactive site and suggests a role of this cysteine as a nucleophile in a post-translational modification reaction.


Subject(s)
Protozoan Proteins/ultrastructure , Trypanosoma cruzi/ultrastructure , Animals , Humans , Leishmania major/ultrastructure , Models, Molecular , Protozoan Proteins/genetics , Scattering, Small Angle , Trypanosoma brucei brucei/ultrastructure , Trypanosoma cruzi/genetics , X-Ray Diffraction
8.
J Biomol NMR ; 74(4-5): 247-256, 2020 May.
Article in English | MEDLINE | ID: mdl-32185644

ABSTRACT

Hydrogen bonds are essential for protein structure and function, making experimental access to long-range interactions between amide protons and heteroatoms invaluable. Here we show that measuring distance restraints involving backbone hydrogen atoms and carbonyl- or α-carbons enables the identification of secondary structure elements based on hydrogen bonds, provides long-range contacts and validates spectral assignments. To this end, we apply specifically tailored, proton-detected 3D (H)NCOH and (H)NCAH experiments under fast magic angle spinning (MAS) conditions to microcrystalline samples of SH3 and GB1. We observe through-space, semi-quantitative correlations between protein backbone carbon atoms and multiple amide protons, enabling us to determine hydrogen bonding patterns and thus to identify ß-sheet topologies and α-helices in proteins. Our approach shows the value of fast MAS and suggests new routes in probing both secondary structure and the role of functionally-relevant protons in all targets of solid-state MAS NMR.


Subject(s)
Hydrogen Bonding , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Structure, Secondary , Amyloid/chemistry , Pancreatic Elastase/chemistry , Protein Folding , Protons , src Homology Domains
9.
J Biomol NMR ; 74(10-11): 555-563, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32533387

ABSTRACT

Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process.


Subject(s)
Drug Discovery/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Small Molecule Libraries/chemistry , Chromatography, Liquid , Ligands , Mass Spectrometry , Protein Binding , Quality Control , Quantitative Structure-Activity Relationship , Software , Solubility
10.
Chembiochem ; 21(11): 1597-1604, 2020 06 02.
Article in English | MEDLINE | ID: mdl-31930693

ABSTRACT

Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.


Subject(s)
Bacterial Proteins/chemistry , Photosynthesis/physiology , Photosystem II Protein Complex/chemistry , Protons , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , Thermosynechococcus/enzymology , Thermosynechococcus/genetics , Water/chemistry , Water/metabolism
11.
Nature ; 512(7515): 387-92, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25119038

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Mycobacterium tuberculosis/immunology , Pigments, Biological/metabolism , Pseudomonas aeruginosa/immunology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Pattern Recognition/metabolism , Animals , Anti-Bacterial Agents/metabolism , Bone Marrow Cells/cytology , Cytokines/immunology , Cytokines/metabolism , Feedback, Physiological , Humans , Ligands , Macrophage Activation , Mice , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Phenazines/metabolism , Pigments, Biological/chemistry , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Virulence Factors/chemistry , Virulence Factors/metabolism
12.
Magn Reson Chem ; 58(5): 445-465, 2020 05.
Article in English | MEDLINE | ID: mdl-31691361

ABSTRACT

Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Protein Structure, Tertiary
13.
Angew Chem Int Ed Engl ; 59(29): 11937-11942, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32219972

ABSTRACT

Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.


Subject(s)
Alkaptonuria/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Pigmentation , Electron Spin Resonance Spectroscopy , Homogentisic Acid/metabolism , Humans , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Pigments, Biological/chemistry
14.
J Struct Biol ; 206(1): 90-98, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30273657

ABSTRACT

Dynamic Nuclear Polarization (DNP) is an effective approach to alleviate the inherently low sensitivity of solid-state NMR (ssNMR) under magic angle spinning (MAS) towards large-sized multi-domain complexes and assemblies. DNP relies on a polarization transfer at cryogenic temperatures from unpaired electrons to adjacent nuclei upon continuous microwave irradiation. This is usually made possible via the addition in the sample of a polarizing agent. The first pioneering experiments on biomolecular assemblies were reported in the early 2000s on bacteriophages and membrane proteins. Since then, DNP has experienced tremendous advances, with the development of extremely efficient polarizing agents or with the introduction of new microwaves sources, suitable for NMR experiments at very high magnetic fields (currently up to 900 MHz). After a brief introduction, several experimental aspects of DNP enhanced NMR spectroscopy applied to biomolecular assemblies are discussed. Recent demonstration experiments of the method on viral capsids, the type III and IV bacterial secretion systems, ribosome and membrane proteins are then described.


Subject(s)
Capsid Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Capsid Proteins/analysis , Free Radicals/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Membrane Proteins/analysis , Microwaves , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular/instrumentation , Peptides/analysis , Temperature
15.
J Struct Biol ; 203(3): 263-272, 2018 09.
Article in English | MEDLINE | ID: mdl-29857134

ABSTRACT

Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson's and Alzheimer's diseases. Their hallmark is the presence of a ß-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of ß-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements.


Subject(s)
Alzheimer Disease/genetics , Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/ultrastructure , Cryoelectron Microscopy , Humans , Microscopy, Atomic Force , Nuclear Magnetic Resonance, Biomolecular , Peptides/genetics , Protein Domains/genetics , Protein Structure, Secondary
16.
Chemistry ; 24(51): 13485-13494, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-29741214

ABSTRACT

Nitroxide biradicals are very efficient polarizing agents in magic angle spinning (MAS) cross effect (CE) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR). Many recently synthesized, new radicals show superior DNP-efficiency in organic solvents but suffer from insufficient solubility in water or glycerol/water for biological applications. We report DNP efficiencies for two new radicals, the water-soluble bcTol-M and cyolyl-TOTAPOL, and include a comparison with three known biradicals, TOTAPOL, bcTol, and AMUPol. They differ by linker groups, featuring either a 3-aminopropane-1,2-diol or a urea tether, or by the structure of the alkyl substituents that flank the nitroxide groups. For evaluating their performances, we measured both signal enhancements ϵ and DNP-enhanced sensitivity κ, and compared the results to electron spin relaxation data recorded at the same magnetic field strength (9.4 T). In our study, differences in DNP efficiency correlate with changes in the nuclear polarization dynamics rather than electron relaxation. The ratios of their individual ϵ and κ differ by up to 20 %, which is explained by starkly different nuclear polarization build-up rates. For the radicals compared here empirically, using proline standard solutions, the new radical bcTol-M performs best while being most soluble in water/glycerol mixtures.

17.
Proc Natl Acad Sci U S A ; 112(16): 5011-6, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25848013

ABSTRACT

Small-molecule competitors of protein-protein interactions are urgently needed for functional analysis of large-scale genomics and proteomics data. Particularly abundant, yet so far undruggable, targets include domains specialized in recognizing proline-rich segments, including Src-homology 3 (SH3), WW, GYF, and Drosophila enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Here, we present a modular strategy to obtain an extendable toolkit of chemical fragments (ProMs) designed to replace pairs of conserved prolines in recognition motifs. As proof-of-principle, we developed a small, selective, peptidomimetic inhibitor of Ena/VASP EVH1 domain interactions. Highly invasive MDA MB 231 breast-cancer cells treated with this ligand showed displacement of VASP from focal adhesions, as well as from the front of lamellipodia, and strongly reduced cell invasion. General applicability of our strategy is illustrated by the design of an ErbB4-derived ligand containing two ProM-1 fragments, targeting the yes-associated protein 1 (YAP1)-WW domain with a fivefold higher affinity.


Subject(s)
Proline-Rich Protein Domains , Protein Interaction Mapping , Animals , Cell Adhesion Molecules/chemistry , Cell Line, Tumor , Cell Membrane Permeability , Crystallography, X-Ray , Drosophila melanogaster/metabolism , Esterification , Fluorescent Antibody Technique , Humans , Kinetics , Ligands , Microfilament Proteins/chemistry , Models, Molecular , Molecular Weight , Peptides/chemistry , Phosphoproteins/chemistry , Protein Binding , Protein Structure, Tertiary , Pseudopodia , Stress Fibers/metabolism , Zyxin/chemistry
18.
J Am Chem Soc ; 138(17): 5561-7, 2016 05 04.
Article in English | MEDLINE | ID: mdl-26451953

ABSTRACT

Smart materials are created in nature at interfaces between biomolecules and solid materials. The ability to probe the structure of functional peptides that engineer biogenic materials at this heterogeneous setting can be facilitated tremendously by use of DNP-enhanced solid-state NMR spectroscopy. This sensitive NMR technique allows simple and quick measurements, often without the need for isotope enrichment. Here, it is used to characterize a pentalysine peptide, derived from a diatom's silaffin protein. The peptide accelerates the formation of bioinspired silica and gets embedded inside the material as it is formed. Two-dimensional DNP MAS NMR of the silica-bound peptide and solution NMR of the free peptide are used to derive its secondary structure in the two states and to pinpoint some subtle conformational changes that the peptide undergoes in order to adapt to the silica environment. In addition, interactions between abundant lysine residues and silica surface are identified, and proximity of other side chains to silica and to neighboring peptide molecules is discussed.

19.
Chembiochem ; 17(14): 1308-11, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27147408

ABSTRACT

Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT.


Subject(s)
Amyloid/chemistry , Cyclic N-Oxides/chemistry , Magnetic Resonance Spectroscopy/methods , Propanols/chemistry , Animals , Binding Sites , Humans , Molecular Structure , Surface Properties
20.
Chemphyschem ; 17(17): 2691-701, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27416769

ABSTRACT

Dynamic nuclear polarization (DNP) is a versatile option to improve the sensitivity of NMR and MRI. This versatility has elicited interest for overcoming potential limitations of these techniques, including the achievement of solid-state polarization enhancement at ambient conditions, and the maximization of (13) C signal lifetimes for performing in vivo MRI scans. This study explores whether diamond's (13) C behavior in nano- and micro-particles could be used to achieve these ends. The characteristics of diamond's DNP enhancement were analyzed for different magnetic fields, grain sizes, and sample environments ranging from cryogenic to ambient temperatures, in both solution and solid-state experiments. It was found that (13) C NMR signals could be boosted by orders of magnitude in either low- or room-temperature solid-state DNP experiments by utilizing naturally occurring paramagnetic P1 substitutional nitrogen defects. We attribute this behavior to the unusually long electronic/nuclear spin-lattice relaxation times characteristic of diamond, coupled with a time-independent cross-effect-like polarization transfer mechanism facilitated by a matching of the nitrogen-related hyperfine coupling and the (13) C Zeeman splitting. The efficiency of this solid-state polarization process, however, is harder to exploit in dissolution DNP-enhanced MRI contexts. The prospects for utilizing polarized diamond approaching nanoscale dimensions for both solid and solution applications are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL