Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cancer Lett ; 584: 216608, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199587

ABSTRACT

Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Lung Neoplasms , Female , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , DNA , Genes, p53 , Lung Neoplasms/genetics , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
bioRxiv ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-38076873

ABSTRACT

Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.

3.
Sci Rep ; 11(1): 9247, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927264

ABSTRACT

Large-scale efforts to identify breast cancer (BC) risk alleles have historically taken place among women of European ancestry. Recently, there are new efforts to verify if these alleles increase risk in African American (AA) women as well. We investigated the effect of previously reported AA breast cancer and triple-negative breast cancer (TNBC) risk alleles in our African-enriched International Center for the Study of Breast Cancer Subtypes (ICSBCS) cohort. Using case-control, case-series and race-nested approaches, we report that the Duffy-null allele (rs2814778) is associated with TNBC risk (OR = 3.814, p = 0.001), specifically among AA individuals, after adjusting for self-indicated race and west African ancestry (OR = 3.368, p = 0.007). We have also validated the protective effect of the minor allele of the ANKLE1 missense variant rs2363956 among AA for TNBC (OR = 0.420, p = 0.005). Our results suggest that an ancestry-specific Duffy-null allele and differential prevalence of a polymorphic gene variant of ANKLE1 may play a role in TNBC breast cancer outcomes. These findings present opportunities for therapeutic potential and future studies to address race-specific differences in TNBC risk and disease outcome.


Subject(s)
Black People/genetics , Duffy Blood-Group System/genetics , Endonucleases/genetics , Receptors, Cell Surface/genetics , Triple Negative Breast Neoplasms/genetics , White People/genetics , Alleles , Biomarkers, Tumor/genetics , Case-Control Studies , Cohort Studies , Female , Genotype , Humans , Internationality , Middle Aged , Risk Factors , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL