Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108446

ABSTRACT

Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Drug Delivery Systems , Cell Communication , Exosomes/metabolism
2.
PLoS Genet ; 15(9): e1008371, 2019 09.
Article in English | MEDLINE | ID: mdl-31527906

ABSTRACT

The Drosophila Nonspecific Lethal (NSL) complex is a major transcriptional regulator of housekeeping genes. It contains at least seven subunits that are conserved in the human KANSL complex: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2), Rcd1/Nsl3 (KANSL3), Rcd5 (MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/KAT8). Previous studies have shown that Dgt1, Rcd1 and Rcd5 are implicated in centrosome maintenance. Here, we analyzed the mitotic phenotypes caused by RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2 or Wds in greater detail. Depletion of any of these proteins in Drosophila S2 cells led to defects in chromosome segregation. Consistent with these findings, Rcd1, Rcd5 and MBD-R2 RNAi cells showed reduced levels of both Cid/CENP-A and the kinetochore component Ndc80. In addition, RNAi against any of the four genes negatively affected centriole duplication. In Wds-depleted cells, the mitotic phenotypes were similar but milder than those observed in Rcd1-, Rcd5- or MBD-R2-deficient cells. RT-qPCR experiments and interrogation of published datasets revealed that transcription of many genes encoding centromere/kinetochore proteins (e.g., cid, Mis12 and Nnf1b), or involved in centriole duplication (e.g., Sas-6, Sas-4 and asl) is substantially reduced in Rcd1, Rcd5 and MBD-R2 RNAi cells, and to a lesser extent in wds RNAi cells. During mitosis, both Rcd1-GFP and Rcd5-GFP accumulate at the centrosomes and the telophase midbody, MBD-R2-GFP is enriched only at the chromosomes, while Wds-GFP accumulates at the centrosomes, the kinetochores, the midbody, and on a specific chromosome region. Collectively, our results suggest that the mitotic phenotypes caused by Rcd1, Rcd5, MBD-R2 or Wds depletion are primarily due to reduced transcription of genes involved in kinetochore assembly and centriole duplication. The differences in the subcellular localizations of the NSL components may reflect direct mitotic functions that are difficult to detect at the phenotypic level, because they are masked by the transcription-dependent deficiency of kinetochore and centriolar proteins.


Subject(s)
Chromosome Duplication/genetics , Chromosome Segregation/genetics , Transcription Factors/genetics , Animals , Cell Cycle Proteins/genetics , Centromere/metabolism , Centrosome/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Kinetochores/metabolism , Microtubules/metabolism , Mitosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Transport/physiology , RNA Interference , RNA-Binding Proteins/genetics , Regulatory Elements, Transcriptional/genetics , Spindle Apparatus/genetics , Transcription Factors/metabolism , Vesicular Transport Proteins/genetics
3.
Small ; 17(45): e2102643, 2021 11.
Article in English | MEDLINE | ID: mdl-34605165

ABSTRACT

Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes , Cell Line, Tumor
4.
BMC Genet ; 21(Suppl 1): 96, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33092520

ABSTRACT

BACKGROUND: The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized. Among these are three lines with Gal4 driven by the elav promoter (BDSC #8760, #8765, and #458), one line with Gal4 driven by the repo promoter (BDSC #7415), and the 69B-Gal4 line (BDSC #1774). For most of these lines, the exact insertion sites of the transgenes and the detailed expression patterns of Gal4 are not known. This study is aimed at filling these gaps. RESULTS: We have mapped the genomic location of the Gal4-bearing P-elements carried by the BDSC lines #8760, #8765, #458, #7415, and #1774. In addition, for each of these lines, we have analyzed the Gal4-driven GFP expression pattern in the third instar larval CNS and eye-antennal imaginal discs. Localizations of the endogenous Elav and Repo proteins were used as markers of neuronal and glial cells, respectively. CONCLUSIONS: We provide a mini-atlas of the spatial activity of Gal4 drivers that are widely used for the expression of UAS-target genes in the Drosophila CNS. The data will be helpful for planning experiments with these drivers and for the correct interpretation of the results.


Subject(s)
Central Nervous System/cytology , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Animals , Central Nervous System/embryology , Chromosome Mapping , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Larva , Neurobiology , Organisms, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics
5.
BMC Genet ; 20(Suppl 1): 31, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30885138

ABSTRACT

BACKGROUND: Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood. Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce. In particular, the function of the D. melanogaster ortholog of CNDP2, encoded by the CG17337 gene (hereafter referred to as dCNDP2), is still unknown. RESULTS: This study was aimed at developing a set of genetic and molecular tools to study the roles of dCNDP2. We generated a dCNDP2 null mutation (hereafter ∆dCNDP2) using CRISPR/Cas9-mediated homologous recombination (HR) and found that the ∆dCNDP2 mutants are homozygous viable, morphologically normal and fertile. We also generated transgenic fly lines expressing eGFP-tagged and non-tagged dCNDP2 protein, all under the control of the UAS promoter, as well as polyclonal antibodies specific to dCNDP2. Using these tools, we demonstrate that only one of the two predicted dCNDP2 isoforms is expressed throughout the different tissues tested. dCNDP2 was detected in both the cytoplasm and the nucleus, and was found to be associated with multiple sites in the salivary gland polytene chromosomes. CONCLUSIONS: The dCNDP2 gene is not essential for fly viability under standard laboratory conditions. The subcellular localization pattern of dCNDP2 suggests that this protein might have roles in both the cytoplasm and the nucleus. The genetic and molecular tools developed in this study will allow further functional characterization of the conserved CNDP2 protein using D. melanogaster as a model system.


Subject(s)
Drosophila melanogaster/genetics , Animals , Animals, Genetically Modified , Cell Line , Cell Proliferation , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Protein Isoforms/genetics
6.
Pharmaceutics ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432733

ABSTRACT

Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines­cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines­murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines­lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.

7.
Pharmaceutics ; 13(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34834326

ABSTRACT

The main advantage of extracellular vesicles (EVs) as a drug carrier system is their low immunogenicity and internalization by mammalian cells. EVs are often considered a cell-specific delivery system, but the production of preparative amounts of EVs for therapeutic applications is challenging due to their laborious isolation and purification procedures. Alternatively, mimetic vesicles prepared from the cellular plasma membrane can be used in the same way as natural EVs. For example, a cytoskeleton-destabilizing agent, such as cytochalasin B, allows the preparation of membrane vesicles by a series of centrifugations. Here, we prepared cytochalasin-B-inducible nanovesicles (CINVs) of various cellular origins and studied their tropism in different mammalian cells. We observed that CINVs derived from human endometrial mesenchymal stem cells exhibited an enhanced affinity to epithelial cancer cells compared to myeloid, lymphoid or neuroblastoma cancer cells. The dendritic cell-derived CINVs were taken up by all studied cell lines with a similar efficiency that differed from the behavior of DC-derived EVs. The ability of cancer cells to internalize CINVs was mainly determined by the properties of recipient cells, and the cellular origin of CINVs was less important. In addition, receptor-mediated interactions were shown to be necessary for the efficient uptake of CINVs. We found that CINVs, derived from late apoptotic/necrotic cells (aCINVs) are internalized by in myelogenous (K562) 10-fold more efficiently than CINVs, and interact much less efficiently with melanocytic (B16) or epithelial (KB-3-1) cancer cells. Finally, we found that CINVs caused a temporal and reversible drop of the rate of cell division, which restored to the level of control cells with a 24 h delay.

8.
Front Pharmacol ; 10: 1152, 2019.
Article in English | MEDLINE | ID: mdl-31680949

ABSTRACT

Dendritic cell (DC)-based anti-tumor vaccines have great potential for the treatment of cancer. To date, a large number of clinical trials involving DC-based vaccines have been conducted with a view to treating tumors of different histological origins. However, DC-based vaccines had several drawbacks, including problems with targeted delivery of tumor antigens to DCs and prolong storage of cellular vaccines. Therefore, the development of other immunotherapeutic approaches capable of enhancing the immunogenicity of existing DC-based vaccines or directly triggering anti-tumor immune responses is of great interest. Extracellular vesicles (EVs) are released by almost all types of eukaryotic cells for paracrine signaling. EVs can interact with target cells and change their functional activity by delivering different signaling molecules including mRNA, non-coding RNA, proteins, and lipids. EVs have potential benefits as natural vectors for the delivery of RNA and other therapeutic molecules targeted to DCs, T-lymphocytes, and tumor cells; therefore, EVs are a promising entity for the development of novel cell-free anti-tumor vaccines that may be a favourable alternative to DC-based vaccines. In the present review, we discuss the anti-tumor potential of EVs derived from DCs, tumors, and other cells. Methods of EV isolation are systematized, and key molecules carried by EVs that are necessary for the activation of a DC-mediated anti-tumor immune response are analyzed with a focus on the RNA component of EVs. Characteristics of anti-tumor immune responses induced by EVs in vitro and in vivo are reviewed. Finally, perspectives and challenges with the use of EVs for the development of anti-tumor cell-free vaccines are considered.

9.
Micromachines (Basel) ; 10(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683842

ABSTRACT

Extracellular vesicles provide cell-to-cell communication and have great potential for use as therapeutic carriers. This study was aimed at the development of an extracellular vesicle-based system for nucleic acid delivery. Three types of nanovesicles were assayed as oligonucleotide carriers: mesenchymal stem cell-derived extracellular vesicles and mimics prepared either by cell treatment with cytochalasin B or by vesicle generation from plasma membrane. Nanovesicles were loaded with a DNA oligonucleotide by freezing/thawing, sonication, or permeabilization with saponin. Oligonucleotide delivery was assayed using HEK293 cells. Extracellular vesicles and mimics were characterized by a similar oligonucleotide loading level but different efficiency of oligonucleotide delivery. Cytochalasin-B-inducible nanovesicles exhibited the highest level of oligonucleotide accumulation in HEK293 cells and a loading capacity of 0.44 ± 0.05 pmol/µg. The loaded oligonucleotide was mostly protected from nuclease action.

SELECTION OF CITATIONS
SEARCH DETAIL