ABSTRACT
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.
Subject(s)
Cell Differentiation/drug effects , Huntington Disease/physiopathology , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Neurons/drug effects , Animals , Animals, Genetically Modified , Cell Differentiation/genetics , Cell Differentiation/physiology , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Lateral Ventricles/pathology , Male , Mice, Transgenic , Mutation , Neurons/metabolism , Neurons/physiology , Panobinostat , RatsABSTRACT
Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. The polyQ expansion increases the propensity of htt to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins are predicted to slow disease progression in HD models. αB-crystallin (αBc) or HspB5 is a well-characterized member of the small heat shock protein (sHsp) family that reduces mutant htt (mhtt) aggregation and toxicity in vitro and in Drosophila models of HD. Here, we determined if overexpressing αBc in vivo modulates aggregation and delays the onset and progression of disease in a full-length model of HD, BACHD mice. Expression of sHsps in neurodegenerative disease predominantly occurs in non-neuronal cells, and in the brain, αBc is mainly found in astrocytes and oligodendrocytes. Here, we show that directed αBc overexpression in astrocytes improves motor performance in rotarod and balance beam tests and improves cognitive function in the BACHD mice. Improvement in behavioral deficits correlated with mitigation of neuropathological features commonly observed in HD. Interestingly, astrocytic αBc overexpression was neuroprotective against neuronal cell loss in BACHD brains, suggesting αBc might be acting in a non-cell-autonomous manner. At the protein level, αBc decreased the level of soluble mhtt and decreased the size of mhtt inclusions in BACHD brain. Our results support a model in which elevating astrocytic αBc confers neuroprotection through a potential non-cell-autonomous pathway that modulates mhtt aggregation and protein levels.
Subject(s)
Astrocytes/pathology , Brain/pathology , Disease Models, Animal , Huntington Disease/physiopathology , Neurons/pathology , alpha-Crystallin B Chain/metabolism , Animals , Astrocytes/metabolism , Behavior, Animal , Brain/metabolism , Humans , Huntingtin Protein/physiology , Mice , Mice, Transgenic , Neurons/metabolism , PhenotypeABSTRACT
Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity.
Subject(s)
Corpus Striatum/metabolism , Huntington Disease/metabolism , Manganese/metabolism , Neurons/metabolism , Urea/metabolism , Animals , Arginase/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Huntington Disease/pathology , Male , Mice , Neurons/pathologyABSTRACT
Secretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice. These mice show a significant reduction of glutaminyl cyclase activity in brain and peripheral tissue, suggesting ubiquitous expression of the isoQC enzyme. An assay of substrate conversion in vivo reveals impaired generation of the pGlu-modified C-C chemokine ligand 2 (CCL2, MCP-1) in isoQC-/- mice. The pGlu-formation was also impaired in primary neurons, which express significant levels of QC. Interestingly, however, the formation of the neuropeptide hormone thyrotropin-releasing hormone (TRH), assessed by immunohistochemistry and hormonal analysis of hypothalamic-pituitary-thyroid axis, was not affected in isoQC-/-, which contrasts to QC-/-. Thus, the results reveal differential functions of isoQC and QC in the formation of the pGlu-peptides CCL2 and TRH. Substrates requiring extensive prohormone processing in secretory granules, such as TRH, are primarily converted by QC. In contrast, protein substrates such as CCL2 appear to be primarily converted by isoQC. The results provide a new example, how subtle differences in subcellular localization of enzymes and substrate precursor maturation might influence pGlu-product formation.
Subject(s)
Aminoacyltransferases/metabolism , Administration, Oral , Aminoacyltransferases/deficiency , Animals , Cells, Cultured , Glucose/administration & dosage , Glucose Tolerance Test , Inflammation/chemically induced , Inflammation/metabolism , Isoenzymes/metabolism , Lipopolysaccharides/administration & dosage , Mice , Mice, Inbred C3H , Mice, Knockout , Pyrrolidonecarboxylic Acid/metabolism , Substrate SpecificityABSTRACT
HSV infection of adult humans occasionally results in life-threatening herpes simplex encephalitis (HSE) for reasons that remain to be defined. An animal system that could prove useful to model HSE could be microRNA-155 knockout (miR-155KO) mice. Thus, we observe that mice with a deficiency of miR-155 are highly susceptible to HSE with a majority of animals (75-80%) experiencing development of HSE after ocular infection with HSV-1. The lesions appeared to primarily represent the destructive consequences of viral replication, and animals could be protected from HSE by acyclovir treatment provided 4 d after ocular infection. The miR-155KO animals were also more susceptible to development of zosteriform lesions, a reflection of viral replication and dissemination within the nervous system. One explanation for the heightened susceptibility to HSE and zosteriform lesions could be because miR-155KO animals develop diminished CD8 T cell responses when the numbers, functionality, and homing capacity of effector CD8 T cell responses were compared. Indeed, adoptive transfer of HSV-immune CD8 T cells to infected miR-155KO mice at 24 h postinfection provided protection from HSE. Deficiencies in CD8 T cell numbers and function also explained the observation that miR-155KO animals were less able than control animals to maintain HSV latency. To our knowledge, our observations may be the first to link miR-155 expression with increased susceptibility of the nervous system to virus infection.
Subject(s)
Brain/metabolism , Encephalitis, Herpes Simplex/genetics , Genetic Predisposition to Disease/genetics , MicroRNAs/genetics , Acyclovir/pharmacology , Adoptive Transfer , Animals , Antiviral Agents/pharmacology , Brain/pathology , Brain/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Encephalitis, Herpes Simplex/therapy , Encephalitis, Herpes Simplex/virology , Female , Flow Cytometry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Host-Pathogen Interactions/drug effects , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Survival Analysis , Virus Replication/drug effectsABSTRACT
Huntington disease (HD) is an inherited progressive neurodegenerative disorder, characterized by motor, cognitive, and psychiatric deficits as well as neurodegeneration and brain atrophy beginning in the striatum and the cortex and extending to other subcortical brain regions. The genetic cause is an expansion of the CAG repeat stretch in the HTT gene encoding huntingtin protein (htt). Here, we generated an HD transgenic rat model using a human bacterial artificial chromosome (BAC), which contains the full-length HTT genomic sequence with 97 CAG/CAA repeats and all regulatory elements. BACHD transgenic rats display a robust, early onset and progressive HD-like phenotype including motor deficits and anxiety-related symptoms. In contrast to BAC and yeast artificial chromosome HD mouse models that express full-length mutant huntingtin, BACHD rats do not exhibit an increased body weight. Neuropathologically, the distribution of neuropil aggregates and nuclear accumulation of N-terminal mutant huntingtin in BACHD rats is similar to the observations in human HD brains. Aggregates occur more frequently in the cortex than in the striatum and neuropil aggregates appear earlier than mutant htt accumulation in the nucleus. Furthermore, we found an imbalance in the striatal striosome and matrix compartments in early stages of the disease. In addition, reduced dopamine receptor binding was detectable by in vivo imaging. Our data demonstrate that this transgenic BACHD rat line may be a valuable model for further understanding the disease mechanisms and for preclinical pharmacological studies.
Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Nerve Tissue Proteins/genetics , Alternative Splicing , Animals , Anxiety/genetics , Anxiety/psychology , Behavior, Animal/physiology , Blotting, Western , Body Weight/physiology , Eating/physiology , Gait Disorders, Neurologic/psychology , Gene Dosage , Humans , Huntingtin Protein , Huntington Disease/psychology , Immunohistochemistry , Motor Activity/physiology , Positron-Emission Tomography , Postural Balance/physiology , Promoter Regions, Genetic , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Real-Time Polymerase Chain ReactionABSTRACT
Posttranslational amyloid-ß (Aß) modification is considered to play an important role in Alzheimer's disease (AD) etiology. An N-terminally modified Aß species, pyroglutamate-amyloid-ß (pE3-Aß), has been described as a major constituent of Aß deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated Aß species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-Aß aggregates rapidly and is known to seed additional Aß aggregation. To directly investigate pE3-Aß toxicity in vivo, we generated and characterized transgenic TBA2.1 and TBA2.2 mice, which express truncated mutant human Aß. Along with a rapidly developing behavioral phenotype, these mice showed progressively accumulating Aß and pE3-Aß deposits in brain regions of neuronal loss, impaired long-term potentiation, microglial activation, and astrocytosis. Illustrating a threshold for pE3-Aß neurotoxicity, this phenotype was not found in heterozygous animals but in homozygous TBA2.1 or double-heterozygous TBA2.1/2.2 animals only. A significant amount of pE3-Aß formation was shown to be QC-dependent, because crossbreeding of TBA2.1 with QC knock-out, but not isoQC knock-out, mice significantly reduced pE3-Aß levels. Hence, lowering the rate of QC-dependent posttranslational pE3-Aß formation can, in turn, lower the amount of neurotoxic Aß species in AD.
Subject(s)
Amyloid beta-Protein Precursor/biosynthesis , Heredodegenerative Disorders, Nervous System/genetics , Heredodegenerative Disorders, Nervous System/pathology , Hippocampus/pathology , Pyrrolidonecarboxylic Acid/metabolism , Aging/pathology , Aging/psychology , Alzheimer Disease/pathology , Animals , Behavior, Animal , Brain/pathology , Enzyme-Linked Immunosorbent Assay , Gliosis/pathology , Heredodegenerative Disorders, Nervous System/psychology , Humans , Immunohistochemistry , Kinetics , Long-Term Potentiation/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Microscopy, Electron , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Phenotype , Postural Balance/physiology , Protein Processing, Post-Translational , Reflex, Startle/physiology , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Huntington Disease (HD) is a fatal neurodegenerative disorder, caused by a mutation in the Huntington gene. Although HD is most often diagnosed in mid-life, the key to its clinical expression may be found during brain maturation. In the present work, we performed in vivo diffusion kurtosis imaging (DKI) in order to study brain microstructure alterations in developing transgenic HD rat pups. Several developing brain regions, relevant for HD pathology (caudate putamen, cortex, corpus callosum, external capsule and anterior commissure anterior), were examined at postnatal days 15 (P15) and 30 (P30), and DKI results were validated with histology. At P15, we observed higher mean (MD) and radial (RD) diffusivity values in the cortex of transgenic HD rat pups. In addition, at the age of P30, lower axial kurtosis (AK) values in the caudate putamen of transgenic HD pups were found. At the level of the external capsule, higher MD values at P15 but lower MD and AD values at P30 were detected. The observed DKI results have been confirmed by myelin basic protein immunohistochemistry, which revealed a reduced fiber staining as well as less ordered fibers in transgenic HD rat pups. These results indicate that neuronal development in young transgenic HD rat pups occurs differently compared to controls and that the presence of mutant huntingtin has an influence on postnatal brain development. In this context, various diffusivity parameters estimated by the DKI model are a powerful tool to assess changes in tissue microstructure and detect developmental changes in young transgenic HD rat pups.
Subject(s)
Aging/pathology , Brain/growth & development , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Disease Models, Animal , Huntington Disease/pathology , Huntington Disease/physiopathology , Animals , Evidence-Based Medicine , Humans , Rats , Rats, Transgenic , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
We report a retrospective case series of four patients with genetically confirmed Huntington's disease (HD) and sporadic amyotrophic lateral sclerosis (ALS), examining the brain and spinal cord in two cases. Neuropathological assessment included a polyglutamine recruitment method to detect sites of active polyglutamine aggregation, and biochemical and immunohistochemical assessment of TDP-43 pathology. The clinical sequence of HD and ALS varied, with the onset of ALS occurring after the mid-50's in all cases. Neuropathologic features of HD and ALS coexisted in both cases examined pathologically: neuronal loss and gliosis in the neostriatum and upper and lower motor neurons, with Bunina bodies and ubiquitin-immunoreactive skein-like inclusions in remaining lower motor neurons. One case showed relatively early HD pathology while the other was advanced. Expanded polyglutamine-immunoreactive inclusions and TDP-43-immunoreactive inclusions were widespread in many regions of the CNS, including the motor cortex and spinal anterior horn. Although these two different proteinaceous inclusions coexisted in a small number of neurons, the two proteins did not co-localize within inclusions. The regional distribution of TDP-43-immunoreactive inclusions in the cerebral cortex partly overlapped with that of expanded polyglutamine-immunoreactive inclusions. In the one case examined by TDP-43 immunoblotting, similar TDP-43 isoforms were observed as in ALS. Our findings suggest the possibility that a rare subset of older HD patients is prone to develop features of ALS with an atypical TDP-43 distribution that resembles that of aggregated mutant huntingtin. Age-dependent neuronal dysfunction induced by mutant polyglutamine protein expression may contribute to later-life development of TDP-43 associated motor neuron disease in a small subset of patients with HD.
Subject(s)
Amyotrophic Lateral Sclerosis/complications , Huntington Disease/complications , Adult , Amyotrophic Lateral Sclerosis/pathology , Brain/metabolism , Brain/pathology , DNA-Binding Proteins/metabolism , Female , Humans , Huntington Disease/pathology , Macrophages/pathology , Male , Middle Aged , Neuroglia/pathology , Neurons/pathology , Peptides/metabolism , Retrospective Studies , Spinal Cord/metabolism , Spinal Cord/pathologyABSTRACT
BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder associated with aging, caused by an expanded polyglutamine (polyQ) repeat within the Huntingtin (HTT) protein. In HD, degeneration of the striatum and atrophy of the cortex are observed while cerebellum is less affected. OBJECTIVE: To test the hypothesis that HTT protein levels decline with age, which together with HTT mutation could influence disease progression. METHODS: Using whole brain cell lysates, a unique method of SDS-PAGE and western analysis was used to quantitate HTT protein, which resolves as a monomer and as a high molecular weight species that is modulated by the presence of transglutaminase 2. HTT levels were measured in striatum, cortex and cerebellum in congenic homozygous Q140 and HdhQ150 knock-in mice and WT littermate controls. RESULTS: Mutant HTT in both homozygous knock-in HD mouse models and WT HTT in control striatal and cortical tissues significantly declined in a progressive manner over time. Levels of mutant HTT in HD cerebellum remained high during aging. CONCLUSIONS: A general decline in mutant HTT levels in striatum and cortex is observed that may contribute to disease progression in homozygous knock-in HD mouse models through reduction of HTT function. In cerebellum, sustained levels of mutant HTT with aging may be protective to this tissue which is less overtly affected in HD.
Subject(s)
Corpus Striatum/metabolism , Disease Progression , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Aging , Animals , Cerebellum/metabolism , Cerebral Cortex/metabolism , Disease Models, Animal , Female , Gene Knock-In Techniques , Homozygote , Huntingtin Protein/genetics , Male , Mice, Inbred C57BL , Mutant Proteins/genetics , Mutant Proteins/metabolismABSTRACT
The formation of polyglutamine aggregates occupies a central role in the pathophysiology of neurodegenerative diseases caused by expanded trinucleotide repeats encoding the amino acid glutamine. This chapter describes sensitive histological methods for detection of tissue sites that are capable of further recruitment of polyglutamine and for sites rich in polyglutamine defined immunohistochemically. These methods have been found to be applicable in a number of diseases and animal models of disease. Recruitment, which is a property of highly ordered, amyloid-like aggregates, is most commonly found in punctate sites, termed aggregation foci (AF), in the neuronal perikaryonal cytoplasm. As expected, these AF correspond to sites containing polyglutamine aggregates detected using the antibody 1C2. Interestingly, however, many of the latter sites, including most neuropil aggregates and neuronal intranuclear inclusions, exhibit a limited ability to support polyglutamine recruitment. Thus there is limited correlation between the distribution of polyglutamine aggregates and recruitment activity, suggesting functional heterogeneity among polyglutamine aggregates. These methods should prove useful in explaining the relationship between aggregation reactions, aggregate formation, and the development of symptomatic disease and should be adaptable to the study of other protein aggregation disorders.
Subject(s)
Brain/metabolism , Peptides/genetics , Brain/pathology , Humans , Immunohistochemistry , Peptides/chemistry , Peptides/metabolism , Trinucleotide Repeat ExpansionABSTRACT
The role of aggregate formation in the pathophysiology of Huntington's disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD. These are initially seen in developing axonal tracts and appear to spread throughout the cerebrum in the early neonate.
Subject(s)
Brain/embryology , Brain/metabolism , Huntingtin Protein/metabolism , Huntington Disease/embryology , Huntington Disease/metabolism , Animals , Axons/metabolism , Axons/pathology , Brain/pathology , Disease Models, Animal , Huntington Disease/pathology , Immunohistochemistry , Mice, Transgenic , Protein Aggregation, Pathological/embryology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathologyABSTRACT
BACKGROUND: Unusually large CAG repeat expansions (>60) in exon one of Huntingtin (HTT) are invariably associated with a juvenile-onset form of Huntington's disease (HD), characterized by a more extensive and rapidly progressing neuropathology than the more prevalent adult-onset form. However, existing mouse models of HD that express the full-length Htt gene with CAG repeat lengths associated with juvenile HD (ranging between ~75 to ~150 repeats in published models) exhibit selective neurodegenerative phenotypes more consistent with adult-onset HD. Objective: To determine if a very large CAG repeat (>200) in full-length Htt elicits neurodegenerative phenotypes consistent with juvenile HD. METHODS: Using a bacterial artificial chromosome (BAC) system, we generated mice expressing full-length mouse Htt with ~225 CAG repeats under control of the mouse Htt promoter. Mice were characterized using behavioral, neuropathological, biochemical and brain imaging methods. RESULTS: BAC-225Q mice exhibit phenotypes consistent with a subset of features seen in juvenile-onset HD: very early motor behavior abnormalities, reduced body weight, widespread and progressive increase in Htt aggregates, gliosis, and neurodegeneration. Early striatal pathology was observed, including reactive gliosis and loss of dopamine receptors, prior to detectable volume loss. HD-related blood markers of impaired energy metabolism and systemic inflammation were also increased. Aside from an age-dependent progression of diffuse nuclear aggregates at 6 months of age to abundant neuropil aggregates at 12 months of age, other pathological and motor phenotypes showed little to no progression. CONCLUSIONS: The HD phenotypes present in animals 3 to 12 months of age make the BAC-225Q mice a unique and stable model of full-length mutant Htt associated phenotypes, including body weight loss, behavioral impairment and HD-like neurodegenerative phenotypes characteristic of juvenile-onset HD and/or late-stage adult-onset HD.
Subject(s)
Behavior, Animal , Brain/pathology , Huntington Disease/genetics , Mice , Neurons/pathology , Serotonin Plasma Membrane Transport Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Atrophy , Brain/metabolism , Chromosomes, Artificial, Bacterial , Disease Models, Animal , Disease Progression , Huntington Disease/pathology , Huntington Disease/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Phenotype , Promoter Regions, GeneticABSTRACT
Huntington's disease (HD) is caused by an expanded CAG repeat leading to the synthesis of an aberrant protein and to the formation of polyglutamine (polyQ)-containing inclusions and aggregates. Limited information is available concerning the association of neuropathological markers with the development of behavioral markers in HD. Using a previously generated transgenic rat model of HD (tgHD rat), we performed association studies on the time-course of behavioral symptoms (motor function, learning, anxiety) and the appearance of striatal atrophy, 1C2 immunopositive aggregates and polyQ recruitment sites, a precursor to these aggregates. At the age of 1 month, tgHD rats exhibited reduced anxiety and improved motor performance, while at 6 months motor impairments and at 9 months cognitive decline occurred. In contrast, polyQ recruitment sites appeared at around 6-9 months of age, indicating that HD-like behavioral markers preceded the appearance of currently detectable neuropathological markers. Interestingly, numerous punctate sites containing polyQ aggregates were also seen in areas receiving afferents from the densely recruiting regions suggesting either transport of recruitment-competent aggregates to terminal projections where initially 1C2 positive aggregates were formed or different internal properties of neurons in different regions. Furthermore, striatal atrophy was observed at the age of 12 months. Taken together, our findings support the hypothesis of a dynamic process leading to region- and age-specific polyQ recruitment and aggregation. The dissociation of onset between behavioral and neuropathological markers is suggestive of as yet undetected processes, which contribute to the early phenotype of these HD transgenic rats.
Subject(s)
Brain/pathology , Huntington Disease/pathology , Huntington Disease/psychology , Aging , Animals , Animals, Genetically Modified , Anxiety , Avoidance Learning , Behavior, Animal , Brain/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Huntington Disease/physiopathology , Male , Maze Learning , Motor Activity , Polyglutamic Acid/metabolism , Psychomotor Performance , Rats , Rats, Sprague-DawleyABSTRACT
We have serendipitously established a mouse that expresses an N-terminal human huntingtin (htt) fragment with an expanded polyglutamine repeat (approximately 120) under the control of the endogenous human promoter (shortstop). Frequent and widespread htt inclusions occur early in shortstop mice. Despite these inclusions, shortstop mice display no clinical evidence of neuronal dysfunction and no neuronal degeneration as determined by brain weight, striatal volume, and striatal neuronal count. These results indicate that htt inclusions are not pathogenic in vivo. In contrast, the full-length yeast artificial chromosome (YAC) 128 model with the identical polyglutamine length and same level of transgenic protein expression as the shortstop demonstrates significant neuronal dysfunction and loss. In contrast to the YAC128 mouse, which demonstrates enhanced susceptibility to excitotoxic death, the shortstop mouse is protected from excitotoxicity, providing in vivo evidence suggesting that neurodegeneration in Huntington disease is mediated by excitotoxic mechanisms.