Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
Add more filters

Publication year range
1.
Nat Rev Neurosci ; 23(1): 53-66, 2022 01.
Article in English | MEDLINE | ID: mdl-34815562

ABSTRACT

The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Models, Statistical , Alzheimer Disease/psychology , Amyloid Neuropathies/metabolism , Amyloid Neuropathies/pathology , Amyloid beta-Peptides , Animals , Humans , tau Proteins/metabolism
2.
Ann Neurol ; 95(2): 274-287, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37837382

ABSTRACT

OBJECTIVE: We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. METHODS: We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18 F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. RESULTS: Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118-0.148, 0.156-0.196, and 0.251-0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). INTERPRETATION: Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 2024;95:274-287.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Connectome , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Magnetic Resonance Imaging/methods , tau Proteins/genetics , tau Proteins/metabolism , Brain/pathology , Positron-Emission Tomography/methods , Amyloid/metabolism , Gene Expression , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/pathology
3.
Ann Neurol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888212

ABSTRACT

OBJECTIVE: We compared the accuracy of amyloid and [18F]Flortaucipir (FTP) tau positron emission tomography (PET) visual reads for distinguishing patients with mild cognitive impairment (MCI) or dementia with fluid biomarker support of Alzheimer's disease (AD). METHODS: Participants with FTP-PET, amyloid-PET, and diagnosis of dementia-AD (n = 102), MCI-AD (n = 41), non-AD diseases (n = 76), and controls (n = 20) were included. AD status was determined independent of PET by cerebrospinal fluid or plasma biomarkers. The mean age was 66.9 years, and 44.8% were women. Three readers interpreted scans blindly and independently. Amyloid-PET was classified as positive/negative using tracer-specific criteria. FTP-PET was classified as positive with medial temporal lobe (MTL) binding as the minimum uptake indicating AD tau (tau-MTL+), positive with posterolateral temporal or extratemporal cortical binding in an AD-like pattern (tau-CTX+), or negative. The majority of scan interpretations were used to calculate diagnostic accuracy of visual reads in detecting MCI/dementia with fluid biomarker support for AD (MCI/dementia-AD). RESULTS: Sensitivity of amyloid-PET for MCI/dementia-AD was 95.8% (95% confidence interval 91.1-98.4%), which was comparable to tau-CTX+ 92.3% (86.7-96.1%, p = 0.67) and tau-MTL+ 97.2% (93.0-99.2%, p = 0.27). Specificity of amyloid-PET for biomarker-negative healthy and disease controls was 84.4% (75.5-91.0%), which was like tau-CTX+ 88.5% (80.4-94.1%, p = 0.34), and trended toward being higher than tau-MTL+ 75.0% (65.1-83.3%, p = 0.08). Tau-CTX+ had higher specificity than tau-MTL+ (p = 0.0002), but sensitivity was lower (p = 0.02), driven by decreased sensitivity for MCI-AD (80.5% [65.1-91.2] vs. 95.1% [83.5-99.4], p = 0.03). INTERPRETATION: Amyloid- and tau-PET visual reads have similar sensitivity/specificity for detecting AD in cognitively impaired patients. Visual tau-PET interpretations requiring cortical binding outside MTL increase specificity, but lower sensitivity for MCI-AD. ANN NEUROL 2024.

4.
Nat Rev Neurosci ; 21(1): 21-35, 2020 01.
Article in English | MEDLINE | ID: mdl-31780819

ABSTRACT

The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-ß (Aß) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aß plaque deposition precedes cortical tau pathology. Because Aß accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aß from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aß accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aß-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aß-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aß and tau.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Alzheimer Disease/therapy , Animals , Apolipoproteins E/metabolism , Cholesterol/metabolism , Endocytosis , Humans , Microglia/metabolism , Plaque, Amyloid/pathology
5.
Brain ; 147(3): 949-960, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37721482

ABSTRACT

Cerebrovascular pathology often co-exists with Alzheimer's disease pathology and can contribute to Alzheimer's disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer's disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-ß pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-ß pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ɛ4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-ß and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ɛ4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-ß pathology on greater baseline tau load (ß = 0.68, P < 0.001) and longitudinal tau accumulation (ß = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-ß on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-ß on longitudinal tau (ß = -0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-ß pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (ß = 0.38, P < 0.001) and between infarcts and plaque density (ß = -0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology-in the presence of amyloid-ß pathology-modifies tau accumulation in early stages of Alzheimer's disease. More specifically, the co-occurrence of microbleeds and amyloid-ß pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Stroke , Humans , Tomography, X-Ray Computed , Amyloid beta-Peptides , Plaque, Amyloid , Infarction , Cerebral Hemorrhage , Apolipoproteins E
6.
Neuroepidemiology ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295775

ABSTRACT

INTRODUCTION, twelve modifiable risk factors (RF) account for 40% of dementia cases worldwide. However, limited data exists on such factors in middle- and low-income countries. We aimed to estimate the population-attributable fractions (PAFs) for the 12 RF in Argentina, assessing changes over a decade, and exploring socioeconomic and sex influences. METHODS, we conducted cross-sectional analyses of the 12 RF from Argentinian surveys conducted in 2009, 2015, and 2018, including 96,321 people. We calculated PAFs, and stratified estimates based on sex and income. RESULTS, we estimated an overall PAF of 59.6%(95%CI=58.9%-60.3%). The largest PAFs were hypertension=9.3%(8.7%-9.9%), physical inactivity=7.4%(6.8%-8.2%), and obesity=7.4%(6.8%-7.9%). Men were more impacted by excessive alcohol, while women by isolation and smoking. Lower income linked to higher PAFs in education, hypertension, and obesity. DISCUSSION, Argentina has a higher PAF for dementia than the world population, with distinct RF distribution. PAF varied by sex and economic status, advocating tailored prevention strategies.

7.
Brain ; 146(4): 1580-1591, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36084009

ABSTRACT

Different tau biomarkers become abnormal at different stages of Alzheimer's disease, with CSF phospho-tau typically becoming elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we implemented an observational study design to examine longitudinal changes in tau-PET, cortical thickness and cognitive decline in amyloid-ß-positive individuals with elevated CSF p-tau levels (P+) but subthreshold Tau-PET retention (T-). To this end, individuals without dementia (i.e. cognitively unimpaired or mild cognitive impairment, n = 231) were selected from the BioFINDER-2 study. Amyloid-ß-positive (A+) individuals were categorized into biomarker groups based on cut-offs for abnormal CSF p-tau217 and 18F-RO948 (Tau) PET, yielding groups of tau-concordant-negative (A+P-T-; n = 30), tau-discordant (i.e. A+P+T-; n = 48) and tau-concordant-positive (A+P+T+; n = 18) individuals. In addition, 135 amyloid-ß-negative, tau-negative, cognitively unimpaired individuals served as controls. Differences in annual change in regional tau-PET, cortical thickness and cognition between the groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures only) education. Mean follow-up time was ∼2 years. Longitudinal increase in tau-PET was faster in the A+P+T- group than in the control and A+P-T- groups across medial temporal and neocortical regions, with the highest accumulation rates in the medial temporal lobe. The A+P+T- group showed a slower rate of increase in tau-PET compared to the A+P+T+ group, primarily in neocortical regions. We did not detect differences in yearly change in cortical thickness or in cognitive decline between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Altogether, these findings suggest that the A+P+T- biomarker profile in persons without dementia is associated with an isolated effect on increased tau-PET accumulation rates but not on cortical thinning and cognitive decline. While this suggests that the tau-discordant biomarker profile is not strongly associated with short-term clinical decline, this group does represent an interesting population for monitoring the effects of interventions with disease-modifying agents on tau accumulation in early Alzheimer's disease, and for examining the emergence of tau aggregates in Alzheimer's disease. Further, we suggest updating the AT(N) criteria for Alzheimer's disease biomarker classification to APT(N).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Positron-Emission Tomography , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Amyloid , Cognition , Biomarkers
8.
Brain ; 146(7): 2975-2988, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37150879

ABSTRACT

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer's disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer's disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , TDP-43 Proteinopathies/pathology , Frontotemporal Lobar Degeneration/pathology , DNA-Binding Proteins/genetics
9.
Brain ; 146(5): 2163-2174, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36268579

ABSTRACT

The behavioural variant of Alzheimer's disease (bvAD) is characterized by early predominant behavioural changes, mimicking the behavioural variant of frontotemporal dementia (bvFTD), which is characterized by social cognition deficits and altered biometric responses to socioemotional cues. These functions remain understudied in bvAD. We investigated multiple social cognition components (i.e. emotion recognition, empathy, social norms and moral reasoning), using the Ekman 60 faces test, Interpersonal Reactivity Index, empathy eliciting videos, Social Norms Questionnaire and moral dilemmas, while measuring eye movements and galvanic skin response. We compared 12 patients with bvAD with patients with bvFTD (n = 14), typical Alzheimer's disease (tAD, n = 13) and individuals with subjective cognitive decline (SCD, n = 13), using ANCOVAs and age- and sex-adjusted post hoc testing. Patients with bvAD (40.1 ± 8.6) showed lower scores on the Ekman 60 faces test compared to individuals with SCD (49.7 ± 5.0, P < 0.001), and patients with tAD (46.2 ± 5.3, P = 0.05) and higher scores compared to patients with bvFTD (32.4 ± 7.3, P = 0.002). Eye-tracking during the Ekman 60 faces test revealed no differences in dwell time on the eyes (all P > 0.05), but patients with bvAD (18.7 ± 9.5%) and bvFTD (19.4 ± 14.3%) spent significantly less dwell time on the mouth than individuals with SCD (30.7 ± 11.6%, P < 0.01) and patients with tAD (32.7 ± 12.1%, P < 0.01). Patients with bvAD (11.3 ± 4.6) exhibited lower scores on the Interpersonal Reactivity Index compared with individuals with SCD (15.6 ± 3.1, P = 0.05) and similar scores to patients with bvFTD (8.7 ± 5.6, P = 0.19) and tAD (13.0 ± 3.2, P = 0.43). The galvanic skin response to empathy eliciting videos did not differ between groups (all P > 0.05). Patients with bvAD (16.0 ± 1.6) and bvFTD (15.2 ± 2.2) showed lower scores on the Social Norms Questionnaire than patients with tAD (17.8 ± 2.1, P < 0.05) and individuals with SCD (18.3 ± 1.4, P < 0.05). No group differences were observed in scores on moral dilemmas (all P > 0.05), while only patients with bvFTD (0.9 ± 1.1) showed a lower galvanic skin response during personal dilemmas compared with SCD (3.4 ± 3.3 peaks per min, P = 0.01). Concluding, patients with bvAD showed a similar although milder social cognition profile and a similar eye-tracking signature to patients with bvFTD and greater social cognition impairments and divergent eye movement patterns compared with patients with tAD. Our results suggest reduced attention to salient facial features in these phenotypes, potentially contributing to their emotion recognition deficits.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Alzheimer Disease/psychology , Cognition/physiology , Social Cognition , Neuropsychological Tests , Emotions , Frontotemporal Dementia/psychology
10.
Brain ; 146(9): 3719-3734, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36967222

ABSTRACT

Mechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e. cognitive resilience) and brain structure (i.e. brain resilience) despite abundant tau pathology, and to clarify whether these associations are cross-sectional or longitudinal. We used a longitudinal study design to investigate the role of several demographic, biological and brain structural factors in yielding cognitive and brain resilience to tau pathology as measured with PET. In this multicentre study, we included 366 amyloid-ß-positive individuals with mild cognitive impairment or Alzheimer's disease dementia with baseline 18F-flortaucipir-PET and longitudinal cognitive assessments. A subset (n = 200) additionally underwent longitudinal structural MRI. We used linear mixed-effects models with global cognition and cortical thickness as dependent variables to investigate determinants of cognitive resilience and brain resilience, respectively. Models assessed whether age, sex, years of education, APOE-ε4 status, intracranial volume (and cortical thickness for cognitive resilience models) modified the association of tau pathology with cognitive decline or cortical thinning. We found that the association between higher baseline tau-PET levels (quantified in a temporal meta-region of interest) and rate of cognitive decline (measured with repeated Mini-Mental State Examination) was adversely modified by older age (Stßinteraction = -0.062, P = 0.032), higher education level (Stßinteraction = -0.072, P = 0.011) and higher intracranial volume (Stßinteraction = -0.07, P = 0.016). Younger age, higher education and greater cortical thickness were associated with better cognitive performance at baseline. Greater cortical thickness was furthermore associated with slower cognitive decline independent of tau burden. Higher education also modified the negative impact of tau-PET on cortical thinning, while older age was associated with higher baseline cortical thickness and slower rate of cortical thinning independent of tau. Our analyses revealed no (cross-sectional or longitudinal) associations for sex and APOE-ε4 status on cognition and cortical thickness. In this longitudinal study of clinically impaired individuals with underlying Alzheimer's disease neuropathological changes, we identified education as the most robust determinant of both cognitive and brain resilience against tau pathology. The observed interaction with tau burden on cognitive decline suggests that education may be protective against cognitive decline and brain atrophy at lower levels of tau pathology, with a potential depletion of resilience resources with advancing pathology. Finally, we did not find major contributions of sex to brain nor cognitive resilience, suggesting that previous links between sex and resilience might be mainly driven by cross-sectional differences.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Longitudinal Studies , tau Proteins/metabolism , Cross-Sectional Studies , Cerebral Cortical Thinning/pathology , Positron-Emission Tomography , Brain/pathology , Cognition , Apolipoproteins E
11.
Brain ; 146(10): 4040-4054, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37279597

ABSTRACT

Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-ß pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-ß pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , tau Proteins , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Magnetoencephalography , Neurons/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism
12.
Brain ; 146(9): 3735-3746, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36892415

ABSTRACT

The amyloid cascade hypothesis has strongly impacted the Alzheimer's disease research agenda and clinical trial designs over the past decades, but precisely how amyloid-ß pathology initiates the aggregation of neocortical tau remains unclear. We cannot exclude the possibility of a shared upstream process driving both amyloid-ß and tau in an independent manner instead of there being a causal relationship between amyloid-ß and tau. Here, we tested the premise that if a causal relationship exists, then exposure should be associated with outcome both at the individual level as well as within identical twin-pairs, who are strongly matched on genetic, demographic and shared environmental background. Specifically, we tested associations between longitudinal amyloid-ß PET and cross-sectional tau PET, neurodegeneration and cognitive decline using genetically identical twin-pair difference models, which provide the unique opportunity of ruling out genetic and shared environmental effects as potential confounders in an association. We included 78 cognitively unimpaired identical twins with [18F]flutemetamol (amyloid-ß)-PET, [18F]flortaucipir (tau)-PET, MRI (hippocampal volume) and cognitive data (composite memory). Associations between each modality were tested at the individual level using generalized estimating equation models, and within identical twin-pairs using within-pair difference models. Mediation analyses were performed to test for directionality in the associations as suggested by the amyloid cascade hypothesis. At the individual level, we observed moderate-to-strong associations between amyloid-ß, tau, neurodegeneration and cognition. The within-pair difference models replicated results observed at the individual level with comparably strong effect sizes. Within-pair differences in amyloid-ß were strongly associated with within-pair differences in tau (ß = 0.68, P < 0.001), and moderately associated with within-pair differences in hippocampal volume (ß = -0.37, P = 0.03) and memory functioning (ß = -0.57, P < 0.001). Within-pair differences in tau were moderately associated with within-pair differences in hippocampal volume (ß = -0.53, P < 0.001) and strongly associated with within-pair differences in memory functioning (ß = -0.68, P < 0.001). Mediation analyses showed that of the total twin-difference effect of amyloid-ß on memory functioning, the proportion mediated through pathways including tau and hippocampal volume was 69.9%, which was largely attributable to the pathway leading from amyloid-ß to tau to memory functioning (proportion mediated, 51.6%). Our results indicate that associations between amyloid-ß, tau, neurodegeneration and cognition are unbiased by (genetic) confounding. Furthermore, effects of amyloid-ß on neurodegeneration and cognitive decline were fully mediated by tau. These novel findings in this unique sample of identical twins are compatible with the amyloid cascade hypothesis and thereby provide important new knowledge for clinical trial designs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Twins, Monozygotic/genetics , tau Proteins/genetics , tau Proteins/metabolism , Cross-Sectional Studies , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloidogenic Proteins , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Amyloid beta-Peptides/metabolism
13.
JAMA ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068545

ABSTRACT

Importance: An accurate blood test for Alzheimer disease (AD) could streamline the diagnostic workup and treatment of AD. Objective: To prospectively evaluate a clinically available AD blood test in primary care and secondary care using predefined biomarker cutoff values. Design, Setting, and Participants: There were 1213 patients undergoing clinical evaluation due to cognitive symptoms who were examined between February 2020 and January 2024 in Sweden. The biomarker cutoff values had been established in an independent cohort and were applied to a primary care cohort (n = 307) and a secondary care cohort (n = 300); 1 plasma sample per patient was analyzed as part of a single batch for each cohort. The blood test was then evaluated prospectively in the primary care cohort (n = 208) and in the secondary care cohort (n = 398); 1 plasma sample per patient was sent for analysis within 2 weeks of collection. Exposure: Blood tests based on plasma analyses by mass spectrometry to determine the ratio of plasma phosphorylated tau 217 (p-tau217) to non-p-tau217 (expressed as percentage of p-tau217) alone and when combined with the amyloid-ß 42 and amyloid-ß 40 (Aß42:Aß40) plasma ratio (the amyloid probability score 2 [APS2]). Main Outcomes and Measures: The primary outcome was AD pathology (determined by abnormal cerebrospinal fluid Aß42:Aß40 ratio and p-tau217). The secondary outcome was clinical AD. The positive predictive value (PPV), negative predictive value (NPV), diagnostic accuracy, and area under the curve (AUC) values were calculated. Results: The mean age was 74.2 years (SD, 8.3 years), 48% were women, 23% had subjective cognitive decline, 44% had mild cognitive impairment, and 33% had dementia. In both the primary care and secondary care assessments, 50% of patients had AD pathology. When the plasma samples were analyzed in a single batch in the primary care cohort, the AUC was 0.97 (95% CI, 0.95-0.99) when the APS2 was used, the PPV was 91% (95% CI, 87%-96%), and the NPV was 92% (95% CI, 87%-96%); in the secondary care cohort, the AUC was 0.96 (95% CI, 0.94-0.98) when the APS2 was used, the PPV was 88% (95% CI, 83%-93%), and the NPV was 87% (95% CI, 82%-93%). When the plasma samples were analyzed prospectively (biweekly) in the primary care cohort, the AUC was 0.96 (95% CI, 0.94-0.98) when the APS2 was used, the PPV was 88% (95% CI, 81%-94%), and the NPV was 90% (95% CI, 84%-96%); in the secondary care cohort, the AUC was 0.97 (95% CI, 0.95-0.98) when the APS2 was used, the PPV was 91% (95% CI, 87%-95%), and the NPV was 91% (95% CI, 87%-95%). The diagnostic accuracy was high in the 4 cohorts (range, 88%-92%). Primary care physicians had a diagnostic accuracy of 61% (95% CI, 53%-69%) for identifying clinical AD after clinical examination, cognitive testing, and a computed tomographic scan vs 91% (95% CI, 86%-96%) using the APS2. Dementia specialists had a diagnostic accuracy of 73% (95% CI, 68%-79%) vs 91% (95% CI, 88%-95%) using the APS2. In the overall population, the diagnostic accuracy using the APS2 (90% [95% CI, 88%-92%]) was not different from the diagnostic accuracy using the percentage of p-tau217 alone (90% [95% CI, 88%-91%]). Conclusions and Relevance: The APS2 and percentage of p-tau217 alone had high diagnostic accuracy for identifying AD among individuals with cognitive symptoms in primary and secondary care using predefined cutoff values. Future studies should evaluate how the use of blood tests for these biomarkers influences clinical care.

14.
Alzheimers Dement ; 20(3): 1739-1752, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38093529

ABSTRACT

INTRODUCTION: We sought to determine structural magnetic resonance imaging (MRI) characteristics across subgroups defined based on relative cognitive domain impairments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and to compare cognitively defined to imaging-defined subgroups. METHODS: We used data from 584 people with Alzheimer's disease (AD) (461 amyloid positive, 123 unknown amyloid status) and 118 amyloid-negative controls. We used voxel-based morphometry to compare gray matter volume (GMV) for each group compared to controls and to AD-Memory. RESULTS: There was pronounced bilateral lower medial temporal lobe atrophy with relative cortical sparing for AD-Memory, lower left hemisphere GMV for AD-Language, anterior lower GMV for AD-Executive, and posterior lower GMV for AD-Visuospatial. Formal asymmetry comparisons showed substantially more asymmetry in the AD-Language group than any other group (p = 1.15 × 10-10 ). For overlap between imaging-defined and cognitively defined subgroups, AD-Memory matched up with an imaging-defined limbic predominant group. DISCUSSION: MRI findings differ across cognitively defined AD subgroups.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Neuroimaging/methods , Magnetic Resonance Imaging , Atrophy/pathology
15.
Alzheimers Dement ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982845

ABSTRACT

INTRODUCTION: Although frontotemporal dementia (FTD) with right anterior temporal lobe (RATL) predominance has been recognized, a uniform description of the syndrome is still missing. This multicenter study aims to establish a cohesive clinical phenotype. METHODS: Retrospective clinical data from 18 centers across 12 countries yielded 360 FTD patients with predominant RATL atrophy through initial neuroimaging assessments. RESULTS: Common symptoms included mental rigidity/preoccupations (78%), disinhibition/socially inappropriate behavior (74%), naming/word-finding difficulties (70%), memory deficits (67%), apathy (65%), loss of empathy (65%), and face-recognition deficits (60%). Real-life examples unveiled impairments regarding landmarks, smells, sounds, tastes, and bodily sensations (74%). Cognitive test scores indicated deficits in emotion, people, social interactions, and visual semantics however, lacked objective assessments for mental rigidity and preoccupations. DISCUSSION: This study cumulates the largest RATL cohort unveiling unique RATL symptoms subdued in prior diagnostic guidelines. Our novel approach, combining real-life examples with cognitive tests, offers clinicians a comprehensive toolkit for managing these patients. HIGHLIGHTS: This project is the first international collaboration and largest reported cohort. Further efforts are warranted for precise nomenclature reflecting neural mechanisms. Our results will serve as a clinical guideline for early and accurate diagnoses.

16.
Alzheimers Dement ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041435

ABSTRACT

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.

17.
Eur J Nucl Med Mol Imaging ; 50(5): 1371-1383, 2023 04.
Article in English | MEDLINE | ID: mdl-36513817

ABSTRACT

PURPOSE: To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. METHODS: A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aß-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. RESULTS: [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aß-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. CONCLUSION: [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , C9orf72 Protein/genetics , tau Proteins/genetics , tau Proteins/metabolism , Positron-Emission Tomography , Mutation , Atrophy
18.
Eur J Nucl Med Mol Imaging ; 50(8): 2409-2419, 2023 07.
Article in English | MEDLINE | ID: mdl-36976303

ABSTRACT

PURPOSE: Tau pathology is associated with concurrent atrophy and decreased cerebral blood flow (CBF) in Alzheimer's disease (AD), but less is known about their temporal relationships. Our aim was therefore to investigate the association of concurrent and longitudinal tau PET with longitudinal changes in atrophy and relative CBF. METHODS: We included 61 individuals from the Amsterdam Dementia Cohort (mean age 65.1 ± 7.5 years, 44% female, 57% amyloid-ß positive [Aß +], 26 cognitively impaired [CI]) who underwent dynamic [18F]flortaucipir PET and structural MRI at baseline and 25 ± 5 months follow-up. In addition, we included 86 individuals (68 CI) who only underwent baseline dynamic [18F]flortaucipir PET and MRI scans to increase power in our statistical models. We obtained [18F]flortaucipir PET binding potential (BPND) and R1 values reflecting tau load and relative CBF, respectively, and computed cortical thickness from the structural MRI scans using FreeSurfer. We assessed the regional associations between i) baseline and ii) annual change in tau PET BPND in Braak I, III/IV, and V/VI regions and cortical thickness or R1 in cortical gray matter regions (spanning the whole brain) over time using linear mixed models with random intercepts adjusted for age, sex, time between baseline and follow-up assessments, and baseline BPND in case of analyses with annual change as determinant. All analyses were performed in Aß- cognitively normal (CN) individuals and Aß+ (CN and CI) individuals separately. RESULTS: In Aß+ individuals, greater baseline Braak III/IV and V/VI tau PET binding was associated with faster cortical thinning in primarily frontotemporal regions. Annual changes in tau PET were not associated with cortical thinning over time in either Aß+ or Aß- individuals. Baseline tau PET was not associated with longitudinal changes in relative CBF, but increases in Braak III/IV tau PET over time were associated with increases in parietal relative CBF over time in Aß + individuals. CONCLUSION: We showed that higher tau load was related to accelerated cortical thinning, but not to decreases in relative CBF. Moreover, tau PET load at baseline was a stronger predictor of cortical thinning than change of tau PET signal.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Middle Aged , Aged , Male , tau Proteins/metabolism , Cerebral Cortical Thinning , Positron-Emission Tomography , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Atrophy/diagnostic imaging , Cerebrovascular Circulation , Cognitive Dysfunction/metabolism
19.
Brain ; 145(10): 3571-3581, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35022652

ABSTRACT

Tau accumulation starts during the preclinical phase of Alzheimer's disease and is closely associated with cognitive decline. For preventive purposes, it is important to identify factors associated with tau accumulation and spread. Studying genetically identical twin-pairs may give insight into genetic and environmental contributions to tau pathology, as similarities in identical twin-pairs largely result from genetic factors, while differences in identical twin-pairs can largely be attributed to non-shared, environmental factors. This study aimed to examine similarities and dissimilarities in a cohort of genetically identical older twin-pairs in (i) tau load; and (ii) spatial distribution of tau, measured with 18F-flortaucipir PET. We selected 78 genetically identical twins (39 pairs; average age 73 ± 6 years), enriched for amyloid-ß pathology and APOE ε4 carriership, who underwent dynamic 18F-flortaucipir PET. We extracted binding potentials (BPND) in entorhinal, temporal, widespread neocortical and global regions, and examined within-pair similarities in BPND using age and sex corrected intra-class correlations. Furthermore, we tested whether twin-pairs showed a more similar spatial 18F-flortaucipir distribution compared to non-twin pairs, and whether the participant's co-twin could be identified solely based on the spatial 18F-flortaucipir distribution. Last, we explored whether environmental (e.g. physical activity, obesity) factors could explain observed differences in twins of a pair in 18F-flortaucipir BPND. On visual inspection, Alzheimer's disease-like 18F-flortaucipir PET patterns were observed, and although we mainly identified similarities in twin-pairs, some pairs showed strong dissimilarities. 18F-flortaucipir BPND was correlated in twins in the entorhinal (r = 0.40; P = 0.01), neocortical (r = 0.59; P < 0.01) and global (r = 0.56; P < 0.01) regions, but not in the temporal region (r = 0.20; P = 0.10). The 18F-flortaucipir distribution pattern was significantly more similar between twins of the same pair [mean r = 0.27; standard deviation (SD) = 0.09] than between non-twin pairings of participants (mean r = 0.01; SD = 0.10) (P < 0.01), also after correcting for proxies of off-target binding. Based on the spatial 18F-flortaucipir distribution, we could identify with an accuracy of 86% which twins belonged to the same pair. Finally, within-pair differences in 18F-flortaucipir BPND were associated with within-pair differences in depressive symptoms (0.37 < ß < 0.56), physical activity (-0.41 < ß < -0.42) and social activity (-0.32 < ß < -0.36) (all P < 0.05). Overall, identical twin-pairs were comparable in tau load and spatial distribution, highlighting the important role of genetic factors in the accumulation and spreading of tau pathology. Considering also the presence of dissimilarities in tau pathology in identical twin-pairs, our results additionally support a role for (potentially modifiable) environmental factors in the onset of Alzheimer's disease pathological processes, which may be of interest for future prevention strategies.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Twins, Monozygotic , Apolipoprotein E4/genetics , Positron-Emission Tomography/methods
20.
Alzheimers Dement ; 19(6): 2497-2507, 2023 06.
Article in English | MEDLINE | ID: mdl-36516028

ABSTRACT

INTRODUCTION: Biomarkers for the prediction of cognitive decline in patients with amnestic mild cognitive impairment (MCI) and amnestic mild dementia are needed for both clinical practice and clinical trials. METHODS: We evaluated the ability of tau-PET (positron emission tomography), cortical atrophy on magnetic resonance imaging (MRI), baseline cognition, apolipoprotein E gene (APOE) status, plasma and cerebrospinal fluid (CSF) levels of phosphorylated tau-217, neurofilament light (NfL), and amyloid beta (Aß)42/40 ratio (individually and in combination) to predict cognitive decline over 2 years in BioFINDER-2 and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: Baseline tau-PET and a composite baseline cognitive score were the strongest independent predictors of cognitive decline. Cortical thickness and NfL provided some additional information. Using a predictive algorithm to enrich patient selection in a theoretical clinical trial led to a significantly lower required sample size. DISCUSSION: Models including baseline tau-PET and cognition consistently provided the best prediction of change in cognitive function over 2 years in patients with amnestic MCI or mild dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Alzheimer Disease/pathology , Positron-Emission Tomography/methods , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL