Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Gen Virol ; 102(5)2021 05.
Article in English | MEDLINE | ID: mdl-34043500

ABSTRACT

The RNA-dependent RNA polymerase (1EPol) is involved in replication of grapevine fanleaf virus (GFLV, Nepovirus, Secoviridae) and causes vein clearing symptoms in Nicotiana benthamiana. Information on protein 1EPol interaction with other viral and host proteins is scarce. To study protein 1EPol biology, three GFLV infectious clones, i.e. GHu (a symptomatic wild-type strain), GHu-1EK802G (an asymptomatic GHu mutant) and F13 (an asymptomatic wild-type strain), were engineered with protein 1EPol fused to a V5 epitope tag at the C-terminus. Following Agrobacterium tumefaciens-mediated delivery of GFLV clones in N. benthamiana and protein extraction at seven dpi, when optimal 1EPol:V5 accumulation was detected, two viral and six plant putative interaction partners of V5-tagged protein 1EPol were identified for the three GFLV clones by affinity purification and tandem mass spectrometry. This study provides insights into the protein interactome of 1EPol during GFLV systemic infection in N. benthamiana and lays the foundation for validation work.


Subject(s)
Nepovirus/physiology , Nicotiana/virology , Protein Interaction Maps , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Agrobacterium tumefaciens/genetics , Chromatography, Affinity , Host-Pathogen Interactions , Mutation , Plant Diseases/virology , Plant Proteins/metabolism , Proteomics , RNA-Dependent RNA Polymerase/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Tandem Mass Spectrometry , Viral Proteins/genetics , Viral Proteins/isolation & purification
2.
Mol Plant Microbe Interact ; 32(7): 790-801, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30640575

ABSTRACT

The mechanisms underlying host plant symptom development upon infection by viruses of the genus Nepovirus in the family Secoviridae, including grapevine fanleaf virus (GFLV), are poorly understood. In the systemic host Nicotiana benthamiana, GFLV strain GHu produces characteristic symptoms of vein clearing in apical leaves, unlike other GFLV strains such as F13, which cause an asymptomatic infection. In this study, we expanded on earlier findings and used reverse genetics to identify residue 802 (lysine, K) of the GFLV-GHu RNA1-encoded RNA-dependent RNA polymerase (1EPol) as a modulator of vein-clearing symptom development in N. benthamiana. Mutations to this site abolished (K to G, A, or Q) or attenuated (K to N or P) symptom expression. Noteworthy, residue 802 is necessary but not sufficient for vein clearing, as GFLV-F13 RNA1 carrying K802 remained asymptomatic in N. benthamiana. No correlation was found between symptom expression and RNA1 accumulation, as shown by reverse transcription-quantitative polymerase chain reaction. Additionally, the involvement of RNA silencing of vein clearing was ruled out by virus-induced gene silencing experiments and structure predictions for protein 1EPol suggested that residue 802 is flanked by strongly predicted stable secondary structures, including a conserved motif of unknown function (805LLKT/AHLK/RT/ALR814). Together, these results reveal the protein nature of the GFLV-GHu symptom determinant in N. benthamiana and provide a solid basis for probing and determining the virus-host proteome network for symptoms of vein clearing.


Subject(s)
Nepovirus , Nicotiana , RNA, Viral , RNA-Dependent RNA Polymerase , Mutation , Nepovirus/enzymology , Nepovirus/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Nicotiana/virology
3.
J Virol Methods ; 257: 16-21, 2018 07.
Article in English | MEDLINE | ID: mdl-29630941

ABSTRACT

One of the greatest hindrances to the study of grapevine fanleaf virus (GFLV) is the dearth of robust protocols for reliable, scalable, and cost-effective inoculation of host plants, especially methods which allow for rapid and targeted manipulation of the virus genome. Agroinoculation fulfills these requirements: it is a relatively rapid, inexpensive, and reliable method for establishing infections, and enables genetic manipulation of viral sequences by modifying plasmids. We designed a system of binary plasmids based on the two genomic RNAs [RNA1 (1) and RNA2 (2)] of GFLV strains F13 (F) and GHu (G) and optimized parameters to maximize systemic infection frequency in Nicotiana benthamiana via agroinoculation. The genomic make-up of the inoculum (G1-G2 and reassortant F1-G2), the identity of the co-infiltrated silencing suppressor (grapevine leafroll associated virus 2 p24), and temperature at which plants were maintained (25 °C) significantly increased systemic infection, while high optical densities of infiltration cultures (OD600nm of 1.0 or 2.0) increased the consistency of systemic infection frequency in N. benthamiana. In contrast, acetosyringone in the bacterial culture media, regardless of concentration, had no effect. Plasmids in this system are amenable to rapid and reliable manipulation by one-step site-directed mutagenesis, as shown by the creation of infectious RNA1 chimeras of the GFLV-F13 and GHu strains. The GFLV agroinoculation plasmids described here, together with the optimized protocol for bacterial culturing and plant maintenance, provide a robust system for the establishment of systemic GFLV infection in N. benthamiana and the rapid generation of GFLV mutants, granting a much-needed tool for investigations into GFLV-host interactions.


Subject(s)
Nepovirus/growth & development , Nicotiana/virology , Plant Diseases/virology , Transformation, Genetic , Plasmids , RNA, Viral/genetics , Reverse Genetics/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL