Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Publication year range
1.
Clin Infect Dis ; 75(1): e1195-e1201, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34651164

ABSTRACT

The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dose, infection, and coronavirus disease 2019 (COVID-19) outcomes remains poorly understood. This review summarizes the existing literature regarding this issue, identifies gaps in current knowledge, and suggests opportunities for future research. In humans, host characteristics, including age, sex, comorbidities, smoking, and pregnancy, are associated with severe COVID-19. Similarly, in animals, host factors are strong determinants of disease severity, although most animal infection models manifest clinically with mild to moderate respiratory disease. The influence of variants of concern as it relates to infectious dose, consequence of overall pathogenicity, and disease outcome in dose-response remains unknown. Epidemiologic data suggest a dose-response relationship for infection contrasting with limited and inconsistent surrogate-based evidence between dose and disease severity. Recommendations include the design of future infection studies in animal models to investigate inoculating dose on outcomes and the use of better proxies for dose in human epidemiology studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Comorbidity , Female , Humans , Pregnancy
2.
J Antimicrob Chemother ; 77(1): 1-2, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34792141

ABSTRACT

The COVID public health emergency has brought home how vulnerable we are to forces beyond our control. We are losing our ability to treat infectious diseases for a number of reasons, including antimicrobial resistance (AMR). AMR is a 'slow-moving' threat, which makes it harder to recognize and address. The situation has not been helped by the difficulty we have had in seeing the actions and health of everyone on this planet as interconnected. The COVID pandemic has changed this. Despite the dire predictions of the effect of AMR in the future, we still have time to change course. Advocacy by scientists and health professionals is a powerful tool in this process, but there are pitfalls and it must be used wisely. In this article I suggest a number of ways in which this can be achieved.


Subject(s)
COVID-19 Drug Treatment , Communicable Diseases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Communicable Diseases/drug therapy , Drug Resistance, Bacterial , Humans , SARS-CoV-2
7.
Lancet Infect Dis ; 24(11): e696-e706, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38964363

ABSTRACT

In 2016, WHO designated Lassa fever a priority disease for epidemic preparedness as part of the WHO Blueprint for Action to Prevent Epidemics. One aspect of preparedness is to promote development of effective medical countermeasures (ie, diagnostics, therapeutics, and vaccines) against Lassa fever. Diagnostic testing for Lassa fever has important limitations and key advancements are needed to ensure rapid and accurate diagnosis. Additionally, the only treatment available for Lassa fever is ribavirin, but controversy exists regarding its effectiveness. Finally, no licensed vaccines are available for the prevention and control of Lassa fever. Ongoing epidemiological and behavioural studies are also crucial in providing actionable information for medical countermeasure development, use, and effectiveness in preventing and treating Lassa fever. This Personal View provides current research priorities for development of Lassa fever medical countermeasures based on literature published primarily in the last 5 years and consensus opinion of 20 subject matter experts with broad experience in public health or the development of diagnostics, therapeutics, and vaccines for Lassa fever. These priorities provide an important framework to ensure that Lassa fever medical countermeasures are developed and readily available for use in endemic and at-risk areas by the end of the decade.


Subject(s)
Lassa Fever , Lassa Fever/prevention & control , Lassa Fever/diagnosis , Lassa Fever/epidemiology , Humans , Lassa virus , Medical Countermeasures , Research , Antiviral Agents/therapeutic use , Biomedical Research/trends , World Health Organization
8.
Lancet Infect Dis ; 24(11): e707-e717, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38964362

ABSTRACT

Nipah virus causes highly lethal disease, with case-fatality rates ranging from 40% to 100% in recognised outbreaks. No treatments or licensed vaccines are currently available for the prevention and control of Nipah virus infection. In 2019, WHO published an advanced draft of a research and development roadmap for accelerating development of medical countermeasures, including diagnostics, therapeutics, and vaccines, to enable effective and timely emergency response to Nipah virus outbreaks. This Personal View provides an update to the WHO roadmap by defining current research priorities for development of Nipah virus medical countermeasures, based primarily on literature published in the last 5 years and consensus opinion of 15 subject matter experts with broad experience in development of medical countermeasures for Nipah virus or experience in the epidemiology, ecology, or public health control of outbreaks of Nipah virus. The research priorities are organised into four main sections: cross-cutting issues (for those that apply to more than one category of medical countermeasures), diagnostics, therapeutics, and vaccines. The strategic goals and milestones identified in each section focus on key achievements that are needed over the next 6 years to ensure that the necessary tools are available for rapid response to future outbreaks of Nipah virus or related henipaviruses.


Subject(s)
Henipavirus Infections , Nipah Virus , Henipavirus Infections/prevention & control , Henipavirus Infections/epidemiology , Henipavirus Infections/therapy , Henipavirus Infections/drug therapy , Humans , Disease Outbreaks/prevention & control , Viral Vaccines , Research , Animals , World Health Organization
10.
Vaccine ; 41(13): 2101-2112, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36870874

ABSTRACT

Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics/prevention & control , Research
11.
Am J Trop Med Hyg ; 104(2): 433-435, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33534734

ABSTRACT

As COVID-19 vaccines are distributed across the United States, it is essential to address the pandemic's disproportionate impact on refugee, immigrant, and migrant (RIM) communities. Although the National Academies Press Framework for Equitable Allocation of COVID-19 Vaccine provides recommendations for an equitable vaccine campaign, implementation remains. Practical considerations for vaccine rollout include identifying and overcoming barriers to vaccination among RIM communities. To identify barriers, information regarding vaccine beliefs and practices must be incorporated into the pandemic response. To overcome barriers, effective communication, convenience of care, and community engagement are essential. Taking these actions now can improve health among RIM communities.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Emigrants and Immigrants , Refugees , SARS-CoV-2 , Transients and Migrants , COVID-19/epidemiology , Humans , United States , Vaccination/standards
12.
Health Aff (Millwood) ; 40(2): 204-211, 2021 02.
Article in English | MEDLINE | ID: mdl-33476187

ABSTRACT

The US has experienced a series of epidemics during the past five decades. None has tested the nation's resilience like the coronavirus disease 2019 (COVID-19) pandemic, which has laid bare critical weaknesses in US pandemic preparedness and domestic leadership and the nation's decline in global standing in public health. Pandemic response has been politicized, proven public health measures undermined, and public confidence in a science-based public health system reduced. This has been compounded by the large number of citizens without ready access to health care, who are overrepresented among infected, hospitalized, and fatal cases. Here, as part of the National Academy of Medicine's Vital Directions for Health and Health Care: Priorities for 2021 initiative, we review the US approach to pandemic preparedness and its impact on the response to COVID-19. We identify six steps that should be taken to strengthen US pandemic resilience, strengthen and modernize the US health care system, regain public confidence in government leadership in public health, and restore US engagement and leadership in global partnerships to address future pandemic threats domestically and around the world.


Subject(s)
COVID-19 , Civil Defense , Communicable Diseases, Emerging/prevention & control , Leadership , Public Health , Resilience, Psychological , Delivery of Health Care , Health Care Reform , Humans , Infection Control
13.
Ann N Y Acad Sci ; 1489(1): 17-29, 2021 04.
Article in English | MEDLINE | ID: mdl-33155324

ABSTRACT

For years, experts have warned that a global pandemic was only a matter of time. Indeed, over the past two decades, several outbreaks and pandemics, from SARS to Ebola, have tested our ability to respond to a disease threat and provided the opportunity to refine our preparedness systems. However, when a novel coronavirus with human-to-human transmissibility emerged in China in 2019, many of these systems were found lacking. From international disputes over data and resources to individual disagreements over the effectiveness of facemasks, the COVID-19 pandemic has revealed several vulnerabilities. As of early November 2020, the WHO has confirmed over 46 million cases and 1.2 million deaths worldwide. While the world will likely be reeling from the effects of COVID-19 for months, and perhaps years, to come, one key question must be asked, How can we do better next time? This report summarizes views of experts from around the world on how lessons from past pandemics have shaped our current disease preparedness and response efforts, and how the COVID-19 pandemic may offer an opportunity to reinvent public health and healthcare systems to be more robust the next time a major challenge appears.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Delivery of Health Care , Pandemics , Public Health , Congresses as Topic , Humans
14.
EClinicalMedicine ; 34: 100815, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33997730

ABSTRACT

BACKGROUND: Though variable, many major metropolitan cities reported profound and unprecedented increases in out-of-hospital cardiac arrest (OHCA) in early 2020. This study examined the relative magnitude of those increases and their relationship to COVID-19 prevalence. METHODS: EMS (9-1-1 system) medical directors for 50 of the largest U.S. cities agreed to provide the aggregate, de-identified, pre-existing monthly tallies of OHCA among adults (age >18 years) occurring between January and June 2020 within their respective jurisdictions. Identical comparison data were also provided for corresponding time periods in 2018 and 2019.  Equivalent data were obtained from the largest cities in Italy, United Kingdom and France, as well as Perth, Australia and Auckland, New Zealand. FINDINGS: Significant OHCA escalations generally paralleled local prevalence of COVID-19. During April, most U.S. cities (34/50) had >20% increases in OHCA versus 2018-2019 which reflected high local COVID-19 prevalence. Thirteen observed 1·5-fold increases in OHCA and three COVID-19 epicenters had >100% increases (2·5-fold in New York City). Conversely, cities with lesser COVID-19 impact observed unchanged (or even diminished) OHCA numbers. Altogether (n = 50), on average, OHCA cases/city rose 59% during April (p = 0·03). By June, however, after mitigating COVID-19 spread, cities with the highest OHCA escalations returned to (or approached) pre-COVID OHCA numbers while cities minimally affected by COVID-19 during April (and not experiencing OHCA increases), then had marked OHCA escalations when COVID-19 began to surge locally. European, Australian, and New Zealand cities mirrored the U.S. experience. INTERPRETATION: Most metropolitan cities experienced profound escalations of OHCA generally paralleling local prevalence of COVID-19.  Most of these patients were pronounced dead without COVID-19 testing. FUNDING: No funding was involved. Cities provided de-identified aggregate data collected routinely for standard quality assurance functions.

15.
Vaccine ; 39(45): 6573-6584, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34602302

ABSTRACT

Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Research
16.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536277

ABSTRACT

Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Disease Susceptibility , SARS-CoV-2/physiology , Animals , COVID-19 Vaccines/adverse effects , Disease Models, Animal , Humans , Phylogeny
19.
Influenza Other Respir Viruses ; 14(4): 444-451, 2020 07.
Article in English | MEDLINE | ID: mdl-32306541

ABSTRACT

BACKGROUND: The Centers of Excellence for Influenza Research and Surveillance (CEIRS) network, funded by the US National Institutes of Health, has been operational since 2007 and is tasked with conducting research to improve understanding of influenza viruses. Recently, CEIRS developed an Influenza Response Plan (IRP) to improve science preparedness for the network. METHODS: Development of the IRP involved a collaborative process between project staff, CEIRS center directors or their designees, and NIAID CEIRS leadership (referred to as the Pandemic Planning Advisory Committee [PPAC]). Project staff identified and summarized the response capabilities of each center and then worked with the PPAC to identify and rank research priorities for an emergency response using a modified Delphi method. RESULTS: Key elements of the response plan include tables of response capabilities for each CEIRS center, a framework that outlines and ranks research priorities for CEIRS during an emergency situation, and an operational strategy for executing the research priorities. CONCLUSIONS: The CEIRS IRP highlights the importance of enhancing science preparedness in advance of an influenza pandemic or other influenza-related zoonotic incident to ensure that research can be carried out expeditiously and effectively in emergency situations and to improve global health security.


Subject(s)
Global Health , Health Planning/methods , Influenza, Human/prevention & control , Pandemics/prevention & control , Research , Science/methods , Health Planning/organization & administration , Humans , Influenza, Human/epidemiology , National Institute of Allergy and Infectious Diseases (U.S.) , Science/organization & administration , United States
SELECTION OF CITATIONS
SEARCH DETAIL