Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Antimicrob Agents Chemother ; 52(5): 1768-81, 2008 May.
Article in English | MEDLINE | ID: mdl-18316528

ABSTRACT

Topical microbicides are self-administered, prophylactic products for protection against sexually transmitted pathogens. A large number of compounds with known anti-human immunodeficiency virus type 1 (HIV-1) inhibitory activity have been proposed as candidate topical microbicides. To identify potential leads, an in vitro screening algorithm was developed to evaluate candidate microbicides in assays that assess inhibition of cell-associated and cell-free HIV-1 transmission, entry, and fusion. The algorithm advances compounds by evaluation in a series of defined assays that generate measurements of relative antiviral potency to determine advancement or failure. Initial testing consists of a dual determination of inhibitory activity in the CD4-dependent CCR5-tropic cell-associated transmission inhibition assay and in the CD4/CCR5-mediated HIV-1 entry assay. The activity is confirmed by repeat testing, and identified actives are advanced to secondary screens to determine their effect on transmission of CXCR4-tropic viruses in the presence or absence of CD4 and their ability to inhibit CXCR4- and CCR5-tropic envelope-mediated cell-to-cell fusion. In addition, confirmed active compounds are also evaluated in the presence of human seminal plasma, in assays incorporating a pH 4 to 7 transition, and for growth inhibition of relevant strains of lactobacilli. Leads may then be advanced for specialized testing, including determinations in human cervical explants and in peripheral blood mononuclear cells against primary HIV subtypes, combination testing with other inhibitors, and additional cytotoxicity assays. PRO 2000 and SPL7013 (the active component of VivaGel), two microbicide products currently being evaluated in human clinical trials, were tested in this in vitro algorithm and were shown to be highly active against CCR5- and CXCR4-tropic HIV-1 infection.


Subject(s)
Algorithms , Anti-HIV Agents/pharmacology , Anti-Infective Agents, Local/pharmacology , HIV-1/drug effects , Amides/pharmacology , Anilides/pharmacology , CCR5 Receptor Antagonists , CD4 Antigens/immunology , Cell Line , Drug Evaluation, Preclinical , Furans/pharmacology , HeLa Cells , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Naphthalenesulfonates/pharmacology , Polymers/pharmacology , Quaternary Ammonium Compounds/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Thioamides
2.
Antimicrob Agents Chemother ; 50(2): 713-23, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16436731

ABSTRACT

The first product to be clinically evaluated as a microbicide contained the nonionic surfactant nonoxynol-9 (nonylphenoxypolyethoxyethanol; N-9). Many laboratories have used N-9 as a control compound for microbicide assays. However, no published comparisons of the results among laboratories or attempts to establish standardized protocols for preclinical testing of microbicides have been performed. In this study, we compared results from 127 N-9 toxicity and 72 efficacy assays that were generated in five different laboratories over the last six years and were performed with 14 different cell lines or tissues. Intra-assay reproducibility was measured at two-, three-, and fivefold differences using standard deviations. Interassay reproducibility was assessed using general linear models, and interaction between variables was studied using step-wise regression. The intra-assay reproducibility within the same N-9 concentration, cell type, assay duration, and laboratory was consistent at the twofold level of standard deviations. For interassay reproducibility, cell line, duration of assay, and N-9 concentration were all significant sources of variability (P < 0.01). Half-maximal toxicity concentrations for N-9 were similar between laboratories for assays of similar exposure durations, but these similarities decreased with lower test concentrations of N-9. Results for both long (>24 h) and short (<2 h) exposures of cells to N-9 showed variability, while assays with 4 to 8 h of N-9 exposure gave results that were not significantly different. This is the first analysis to compare preclinical N-9 toxicity levels that were obtained by different laboratories using various protocols. This comparative work can be used to develop standardized microbicide testing protocols that will help advance potential microbicides to clinical trials.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-Infective Agents/pharmacology , Nonoxynol/pharmacology , Cell Line , HIV-1/drug effects , HIV-1/physiology , Reproducibility of Results , Retrospective Studies , Virus Replication/drug effects
3.
Antimicrob Agents Chemother ; 47(9): 2810-6, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12936978

ABSTRACT

Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with various biological activities, including inhibition of human immunodeficiency virus (HIV) type 1 (HIV-1). G protein-coupled chemokine receptors are used by HIV-1 as coreceptors to enter the host cells. In this study, we assessed the effects of shikonin on chemokine receptor function and HIV-1 replication. The results showed that, at nanomolar concentrations, shikonin inhibited monocyte chemotaxis and calcium flux in response to a variety of CC chemokines (CCL2 [monocyte chemoattractant protein 1], CCL3 [macrophage inflammatory protein 1alpha], and CCL5 [regulated upon activation, normal T-cell expressed and secreted protein]), the CXC chemokine (CXCL12 [stromal cell-derived factor 1alpha]), and classic chemoattractants (formylmethionyl-leucine-phenylalanine and complement fraction C5a). Shikonin down-regulated surface expression of CCR5, a primary HIV-1 coreceptor, on macrophages to a greater degree than the other receptors (CCR1, CCR2, CXCR4, and the formyl peptide receptor) did. CCR5 mRNA expression was also down-regulated by the compound. Additionally, shikonin inhibited the replication of a multidrug-resistant strain and pediatric clinical isolates of HIV in human peripheral blood mononuclear cells, with 50% inhibitory concentrations (IC(50)s) ranging from 96 to 366 nM. Shikonin also effectively inhibited the replication of the HIV Ba-L isolate in monocytes/macrophages, with an IC(50) of 470 nM. Our results suggest that the anti-HIV and anti-inflammatory activities of shikonin may be related to its interference with chemokine receptor expression and function. Therefore, shikonin, as a naturally occurring, low-molecular-weight pan-chemokine receptor inhibitor, constitutes a basis for the development of novel anti-HIV therapeutic agents.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Naphthoquinones/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Calcium Signaling/drug effects , Cell Survival/drug effects , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Down-Regulation/drug effects , Flow Cytometry , Humans , RNA, Viral/biosynthesis , RNA, Viral/genetics , Receptors, CCR5/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL