Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Org Biomol Chem ; 22(11): 2203-2210, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38414440

ABSTRACT

Flow chemistry has emerged as an integral process within the chemical sector permitting energy efficient synthetic scale-up while improving safety and minimising solvent usage. Herein, we report the first applications of the photoactivated, radical-mediated thiol-ene reaction for peptide bioconjugation under continuous flow. Bioconjugation reactions employing deep eutectic solvents, bio-based solvents and fully aqueous systems are reported here for a range of biologically relevant peptide substrates. The use of a water soluble photoinitiator, Irgacure 2959, permitted synthesis of glycosylated peptides in fully aqueous conditions, obviating the need for addition of organic solvents and enhancing the green credentials of these rapid, photoactivated, bioconjugation reactions.


Subject(s)
Peptides , Sulfhydryl Compounds , Solvents , Water
2.
Cryst Growth Des ; 24(7): 2985-3001, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38585376

ABSTRACT

A novel monoacylglycerol, 7.10 MAG, has been produced for use in the in meso (lipid cubic phase) crystallization of membrane proteins and complexes. 7.10 MAG differs from monoolein, the most extensively used lipid for in meso crystallization, in that it is shorter in chain length by one methylene and its cis olefinic bond is two carbons closer to the glycerol headgroup. These changes in structure alter the phase behavior of the hydrated lipid and the microstructure of the corresponding mesophases formed. Temperature-composition phase diagrams for 7.10 MAG have been constructed using small- and wide-angle X-ray scattering over a range of temperatures and hydration levels that span those used for crystallization. The phase diagrams include lamellar crystalline, fluid isotropic, lamellar liquid-crystalline, cubic-Ia3d, and cubic-Pn3m phases, as observed with monoolein. Conspicuous by its absence is the inverted hexagonal phase which is rationalized on the basis of 7.10 MAG's chemical constitution. The cubic phase prepared with the new lipid facilitates the growth of crystals that were used to generate high-resolution structures of intramembrane ß-barrel and α-helical proteins. Compatibility of fully hydrated 7.10 MAG with cholesterol and phosphatidylcholine means that these two lipids can be used as additives to optimize crystallogenesis in screening trials with 7.10 MAG as the host lipid.

3.
ACS Chem Biol ; 19(5): 1125-1130, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38712757

ABSTRACT

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Drug Design , Peptides, Cyclic , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Depsipeptides/pharmacology , Depsipeptides/chemistry , Lipoproteins/chemistry , Lipoproteins/metabolism , Lipoproteins/pharmacology , Lipoproteins/antagonists & inhibitors , Bacterial Proteins , Peptides , Aspartic Acid Endopeptidases
SELECTION OF CITATIONS
SEARCH DETAIL