Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Journal subject
Affiliation country
Publication year range
1.
Arch Biochem Biophys ; 735: 109519, 2023 02.
Article in English | MEDLINE | ID: mdl-36642262

ABSTRACT

Prostate cancer has a relatively good prognosis, but most cases develop resistance to hormone therapy, leading to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) antagonists and a cytochrome P450 17A1 inhibitor have been used to treat CRPC, but cancer cells readily develop resistance to these drugs. In this study, to improve the therapy of CRPC, we searched for natural compounds which block androgen signaling. Among cinnamic acid derivatives contained in Brazilian green propolis, artepillin C (ArtC) suppressed expressions of androgen-induced prostate-specific antigen and transmembrane protease serine 2 in a dose-dependent manner. Reporter assays revealed that ArtC displayed AR antagonist activity, albeit weaker than an AR antagonist flutamide. In general, aberrant activation of the androgen signaling is involved in the resistance of prostate cancer cells to hormone therapy. Recently, apalutamide, a novel AR antagonist, has been in clinical use, but its drug-resistant cases have been already reported. To search for compounds which overcome the resistance to apalutamide, we established apalutamide-resistant prostate cancer 22Rv1 cells (22Rv1/APA). The 22Rv1/APA cells showed higher AR expression and androgen sensitivity than parental 22Rv1 cells. ArtC inhibited androgen-induced proliferation of 22Rv1/APA cells by suppressing the enhanced androgen signaling through blocking the nuclear translocation of AR. In addition, ArtC potently sensitized the resistant cells to apalutamide by inducing apoptotic cell death due to mitochondrial dysfunction. These results suggest that the intake of Brazilian green propolis containing ArtC improves prostate cancer therapy.


Subject(s)
Propolis , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Androgens , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Propolis/therapeutic use , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use
2.
Rinsho Byori ; 65(1): 32-36, 2017 01.
Article in Japanese | MEDLINE | ID: mdl-30695509

ABSTRACT

Presently we, Keio Endocrine and Metabolite Survey (KEMS) study group conducted a questionnaire sur- vey with respect to panic values in the laboratories belonging to Keio University-associated hospitals. As to the initial setting, most of the laboratories answered to play a leading role in preparing the necessary matters to implementation of panic values and revise them corresponding to physician's request on each occasion. In almost all laboratories, they did not verify whether the notification procedure does work to exert appropriate clinical action. The numbers of critical values answered by the 18 laboratories distributed widely in the test items (8-39) and their critical limits (10-68). As to the critical limits, the lower limits of serum K and blood glucose converged among the laboratories, however, the limits of other test items diverged. The results of the present survey regarding to critical values, although being in small scale, may submit the im- portant issue to be solved in near future. [Short Communication].


Subject(s)
Laboratories, Hospital/standards , Guidelines as Topic , Hematology/standards
3.
Chem Biol Interact ; 388: 110840, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38122923

ABSTRACT

Systemic chemotherapy with gemcitabine and cisplatin (GC) has been used for the treatment of bladder cancer in which androgen receptor (AR) signaling is suggested to play a critical role. However, its efficacy is often limited, and the prognosis of patients who develop resistance is extremely poor. Aldo-keto reductase 1C3 (AKR1C3), which is responsible for the production of a potent androgen, 5α-dihydrotestosterone (DHT), by the reduction of 5α-androstane-3α,17ß-dione (5α-Adione), has been attracting attention as a therapeutic target for prostate cancer that shows androgen-dependent growth. By contrast, the role of AKR1C3 in bladder cancer remains unclear. In this study, we examined the effect of an AKR1C3 inhibitor on androgen-dependent proliferation and GC sensitivity in bladder cancer cells. 5α-Adione treatment induced the expression of AR and its downstream factor ETS-domain transcription factor (ELK1) in both T24 cells and newly established GC-resistant T24GC cells, while it did not alter AKR1C3 expression. AKR1C3 inhibitor 2j significantly suppressed 5α-Adione-induced AR and ELK1 upregulation, as did an AR antagonist apalutamide. Moreover, the combination of GC and 2j in T24GC significantly induced apoptotic cell death, suggesting that 2j could enhance GC sensitivity. Immunohistochemical staining in surgical specimens further revealed that strong expression of AKR1C3 was associated with significantly higher risks of tumor progression and cancer-specific mortality in patients with muscle-invasive bladder cancer. These results suggest that AKR1C3 inhibitors as adjunctive agents enhance the efficacy of GC therapy for bladder cancer.


Subject(s)
Drug Resistance, Neoplasm , Urinary Bladder Neoplasms , Humans , Male , 3-Hydroxysteroid Dehydrogenases/metabolism , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/metabolism , Androgens/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gemcitabine , Hydroxyprostaglandin Dehydrogenases/metabolism , Prostatic Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Drug Resistance, Neoplasm/genetics
4.
J Med Chem ; 65(6): 4878-4892, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35244402

ABSTRACT

Autophagy inhibition is an attractive target for cancer therapy. In this study, we discovered inhibitors of Atg4B essential for autophagosome formation and evaluated their potential as therapeutics for prostate cancer. Seventeen compounds were identified as candidates after in silico screening and a thermal shift assay. Among them, compound 17 showed the most potent Atg4B inhibitory activity, inhibited autophagy induced by anti-castration-resistant prostate cancer (CRPC) drugs, and significantly enhanced apoptosis. Although 17 has been known as a phospholipase A2 (PLA2) inhibitor, other PLA2 inhibitors had no effect on Atg4B and autophagy. We then performed structural optimization based on molecular modeling and succeeded in developing 21f (by shortening the alkyl chain of 17), which was a potent competitive inhibitor for Atg4B (Ki = 3.1 µM) with declining PLA2 inhibitory potency. Compound 21f enhanced the anticancer activity of anti-CRPC drugs via autophagy inhibition. These findings suggest that 21f can be used as an adjuvant drug for therapy with anti-CRPC drugs.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Apoptosis , Autophagy , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/pharmacology , Cell Line, Tumor , Cysteine Endopeptidases/chemistry , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL