Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
Magn Reson Med ; 91(2): 600-614, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37849064

ABSTRACT

PURPOSE: To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI. METHODS: Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers. RESULTS: The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts. CONCLUSION: Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.


Subject(s)
Magnetic Resonance Imaging , Respiratory-Gated Imaging Techniques , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Motion , Acceleration , Respiratory-Gated Imaging Techniques/methods , Image Processing, Computer-Assisted/methods , Respiration
2.
Magn Reson Med ; 92(3): 1162-1176, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38576131

ABSTRACT

PURPOSE: Develop a true real-time implementation of MR signature matching (MRSIGMA) for free-breathing 3D MRI with sub-200 ms latency on the Elekta Unity 1.5T MR-Linac. METHODS: MRSIGMA was implemented on an external computer with a network connection to the MR-Linac. Stack-of-stars with partial kz sampling was used to accelerate data acquisition and ReconSocket was employed for simultaneous data transmission. Movienet network computed the 4D MRI motion dictionary and correlation analysis was used for signature matching. A programmable 4D MRI phantom was utilized to evaluate MRSIGMA with respect to a ground-truth translational motion reference. In vivo validation was performed on patients with pancreatic cancer, where 15 patients were employed to train Movienet and 7 patients to test the real-time implementation of MRSIGMA. Dice coefficients between real-time MRSIGMA and a retrospectively computed 4D reference were used to evaluate motion tracking performance. RESULTS: Motion dictionary was computed in under 5 s. Signature acquisition and matching presented 173 ms latency on the phantom and 193 ms on patients. MRSIGMA presented a mean error of 1.3-1.6 mm for all phantom experiments, which was below the 2 mm acquisition resolution along the motion direction. The Dice coefficient over time between MRSIGMA and reference contours was 0.88 ± 0.02 (GTV), 0.87 ± 0.02(duodenum-stomach), and 0.78 ± 0.02(small bowel), demonstrating high motion tracking performance for both tumor and organs at risk. CONCLUSION: The real-time implementation of MRSIGMA enabled true real-time free-breathing 3D MRI with sub-200 ms imaging latency on a clinical MR-Linac system, which can be used for treatment monitoring, adaptive radiotherapy and dose accumulation mapping in tumors affected by respiratory motion.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Pancreatic Neoplasms , Phantoms, Imaging , Respiration , Humans , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Motion , Image Processing, Computer-Assisted/methods , Retrospective Studies , Image Interpretation, Computer-Assisted/methods
3.
Magn Reson Med ; 90(5): 1844-1858, 2023 11.
Article in English | MEDLINE | ID: mdl-37392413

ABSTRACT

PURPOSE: To enable free-breathing and high isotropic resolution liver quantitative susceptibility mapping (QSM) using 3D multi-echo UTE cones acquisition and respiratory motion-resolved image reconstruction. METHODS: Using 3D multi-echo UTE cones MRI, a respiratory motion was estimated from the k-space center of the imaging data. After sorting the k-space data with estimated motion, respiratory motion state-resolved reconstruction was performed for multi-echo data followed by nonlinear least-squares fitting for proton density fat fraction (PDFF), R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , and fat-corrected B0 field maps. PDFF and B0 field maps were subsequently used for QSM reconstruction. The proposed method was compared with motion-averaged (gridding) reconstruction and conventional 3D multi-echo Cartesian MRI in moving gadolinium phantom and in vivo studies. Region of interest (ROI)-based linear regression analysis was performed on these methods to investigate correlations between gadolinium concentration and QSM in the phantom study and between R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and QSM in in vivo study. RESULTS: Cones with motion-resolved reconstruction showed sharper image quality compared to motion-averaged reconstruction with a substantial reduction of motion artifacts in both moving phantom and in vivo studies. For ROI-based linear regression analysis of the phantom study, susceptibility values from cones with motion-resolved reconstruction ( QSM ppm $$ {\mathrm{QSM}}_{\mathrm{ppm}} $$ = 0.31 × gadolinium mM + $$ \times {\mathrm{gadolinium}}_{\mathrm{mM}}+ $$ 0.05, R 2 $$ {R}^2 $$ = 0.999) and Cartesian without motion ( QSM ppm $$ {\mathrm{QSM}}_{\mathrm{ppm}} $$ = 0.32 × gadolinium mM + $$ \times {\mathrm{gadolinium}}_{\mathrm{mM}}+ $$ 0.04, R 2 $$ {R}^2 $$ = 1.000) showed linear relationships with gadolinium concentrations and showed good agreement with each other. For in vivo, motion-resolved reconstruction showed higher goodness of fit ( QSM ppm $$ {\mathrm{QSM}}_{\mathrm{ppm}} $$ = 0.00261 × R 2 s - 1 * - $$ \times {\mathrm{R}}_{2_{{\mathrm{s}}^{-1}}}^{\ast }- $$ 0.524, R 2 $$ {R}^2 $$ = 0.977) compared to motion-averaged reconstruction ( QSM ppm $$ {\mathrm{QSM}}_{\mathrm{ppm}} $$ = 0.0021 × R 2 s - 1 * - $$ \times {\mathrm{R}}_{2_{{\mathrm{s}}^{-1}}}^{\ast }- $$ 0.572, R 2 $$ {R}^2 $$ = 0.723) in ROI-based linear regression analysis between R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and QSM. CONCLUSION: Feasibility of free-breathing liver QSM was demonstrated with motion-resolved 3D multi-echo UTE cones MRI, achieving high isotropic resolution currently unachievable in conventional Cartesian MRI.


Subject(s)
Gadolinium , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Respiration , Respiratory Rate , Magnetic Resonance Imaging/methods
4.
Magn Reson Med ; 89(1): 233-249, 2023 01.
Article in English | MEDLINE | ID: mdl-36128888

ABSTRACT

PURPOSE: To develop a clinical CEST MR fingerprinting (CEST-MRF) method for brain tumor quantification using EPI acquisition and deep learning reconstruction. METHODS: A CEST-MRF pulse sequence originally designed for animal imaging was modified to conform to hardware limits on clinical scanners while keeping scan time under 2 min. Quantitative MRF reconstruction was performed using a deep reconstruction network (DRONE) to yield the water relaxation and chemical exchange parameters. The feasibility of the six parameter DRONE reconstruction was tested in simulations using a digital brain phantom. A healthy subject was scanned with the CEST-MRF sequence, conventional MRF and CEST sequences for comparison. Reproducibility was assessed via test-retest experiments and the concordance correlation coefficient calculated for white matter and gray matter. The clinical utility of CEST-MRF was demonstrated on four patients with brain metastases in comparison to standard clinical imaging sequences. Tumors were segmented into edema, solid core, and necrotic core regions and the CEST-MRF values compared to the contra-lateral side. RESULTS: DRONE reconstruction of the digital phantom yielded a normalized RMS error of ≤7% for all parameters. The CEST-MRF parameters were in good agreement with those from conventional MRF and CEST sequences and previous studies. The mean concordance correlation coefficient for all six parameters was 0.98 ± 0.01 in white matter and 0.98 ± 0.02 in gray matter. The CEST-MRF values in nearly all tumor regions were significantly different (P = 0.05) from each other and the contra-lateral side. CONCLUSION: Combination of EPI readout and deep learning reconstruction enabled fast, accurate and reproducible CEST-MRF in brain tumors.


Subject(s)
Brain Neoplasms , Deep Learning , Animals , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
5.
NMR Biomed ; 36(10): e4954, 2023 10.
Article in English | MEDLINE | ID: mdl-37070221

ABSTRACT

Chemical exchange saturation transfer (CEST) MRI is a promising molecular imaging technique but suffers from long scan times and complicated processing. CEST was recently combined with magnetic resonance fingerprinting (MRF) to address these shortcomings. However, the CEST-MRF signal depends on multiple acquisition and tissue parameters so selecting an optimal acquisition schedule is challenging. In this work, we propose a novel dual-network deep learning framework to optimize the CEST-MRF acquisition schedule. The quality of the optimized schedule was assessed in a digital brain phantom and compared with alternate deep learning optimization approaches. The effect of schedule length on the reconstruction error was also investigated. A healthy subject was scanned with optimized and random schedules and with a conventional CEST sequence for comparison. The optimized schedule was also tested in a subject with metastatic renal cell carcinoma. Reproducibility was assessed via test-retest experiments and the concordance correlation coefficient calculated for white matter (WM) and grey matter (GM). The optimized schedule was 12% shorter but yielded equal or lower normalized root mean square error for all parameters. The proposed optimization also provided a lower error compared with alternate methodologies. Longer schedules generally yielded lower error. In vivo maps obtained with the optimized schedule showed reduced noise and improved delineation of GM and WM. CEST curves synthesized from the optimized parameters were highly correlated (r = 0.99) with measured conventional CEST. The mean concordance correlation coefficient in WM/GM for all tissue parameters was 0.990/0.978 for the optimized schedule but only 0.979/0.975 for the random schedule. The proposed schedule optimization is widely applicable to MRF pulse sequences and provides accurate and reproducible tissue maps with reduced noise at a shorter scan time than a randomly generated schedule.


Subject(s)
Carcinoma, Renal Cell , Deep Learning , Kidney Neoplasms , Humans , Reproducibility of Results , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Brain/diagnostic imaging , Phantoms, Imaging
6.
NMR Biomed ; 36(3): e4861, 2023 03.
Article in English | MEDLINE | ID: mdl-36305619

ABSTRACT

The purpose of the current study was to develop a deep learning technique called Golden-angle RAdial Sparse Parallel Network (GRASPnet) for fast reconstruction of dynamic contrast-enhanced 4D MRI acquired with golden-angle radial k-space trajectories. GRASPnet operates in the image-time space and does not use explicit data consistency to minimize the reconstruction time. Three different network architectures were developed: (1) GRASPnet-2D: 2D convolutional kernels (x,y) and coil and contrast dimensions collapsed into a single combined dimension; (2) GRASPnet-3D: 3D kernels (x,y,t); and (3) GRASPnet-2D + time: two 3D kernels to first exploit spatial correlations (x,y,1) followed by temporal correlations (1,1,t). The networks were trained using iterative GRASP reconstruction as the reference. Free-breathing 3D abdominal imaging with contrast injection was performed on 33 patients with liver lesions using a T1-weighted golden-angle stack-of-stars pulse sequence. Ten datasets were used for testing. The three GRASPnet architectures were compared with iterative GRASP results using quantitative and qualitative analysis, including impressions from two body radiologists. The three GRASPnet techniques reduced the reconstruction time to about 13 s with similar results with respect to iterative GRASP. Among the GRASPnet techniques, GRASPnet-2D + time compared favorably in the quantitative analysis. Spatiotemporal deep learning enables reconstruction of dynamic 4D contrast-enhanced images in a few seconds, which would facilitate translation to clinical practice of compressed sensing methods that are currently limited by long reconstruction times.


Subject(s)
Deep Learning , Humans , Contrast Media , Image Interpretation, Computer-Assisted/methods , Respiration , Magnetic Resonance Imaging/methods , Artifacts , Imaging, Three-Dimensional/methods , Image Enhancement/methods
7.
NMR Biomed ; 35(7): e4718, 2022 07.
Article in English | MEDLINE | ID: mdl-35226774

ABSTRACT

The aim of this work is to develop a data-driven quantitative dynamic contrast-enhanced (DCE) MRI technique using Golden-angle RAdial Sparse Parallel (GRASP) MRI with high spatial resolution and high flexible temporal resolution and pharmacokinetic (PK) analysis with an arterial input function (AIF) estimated directly from the data obtained from each patient. DCE-MRI was performed on 13 patients with gynecological malignancy using a 3-T MRI scanner with a single continuous golden-angle stack-of-stars acquisition and image reconstruction with two temporal resolutions, by exploiting a unique feature in GRASP that reconstructs acquired data with user-defined temporal resolution. Joint estimation of the AIF (both AIF shape and delay) and PK parameters was performed with an iterative algorithm that alternates between AIF and PK estimation. Computer simulations were performed to determine the accuracy (expressed as percentage error [PE]) and precision of the estimated parameters. PK parameters (volume transfer constant [Ktrans ], fractional volume of the extravascular extracellular space [ve ], and blood plasma volume fraction [vp ]) and normalized root-mean-square error [nRMSE] (%) of the fitting errors for the tumor contrast kinetic data were measured both with population-averaged and data-driven AIFs. On patient data, the Wilcoxon signed-rank test was performed to compare nRMSE. Simulations demonstrated that GRASP image reconstruction with a temporal resolution of 1 s/frame for AIF estimation and 5 s/frame for PK analysis resulted in an absolute PE of less than 5% in the estimation of Ktrans and ve , and less than 11% in the estimation of vp . The nRMSE (mean ± SD) for the dual temporal resolution image reconstruction and data-driven AIF was 0.16 ± 0.04 compared with 0.27 ± 0.10 (p < 0.001) with 1 s/frame using population-averaged AIF, and 0.23 ± 0.07 with 5 s/frame using population-averaged AIF (p < 0.001). We conclude that DCE-MRI data acquired and reconstructed with the GRASP technique at dual temporal resolution can successfully be applied to jointly estimate the AIF and PK parameters from a single acquisition resulting in data-driven AIFs and voxelwise PK parametric maps.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Algorithms , Arteries , Contrast Media/pharmacokinetics , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results
8.
Radiology ; 298(2): 248-260, 2021 02.
Article in English | MEDLINE | ID: mdl-33350894

ABSTRACT

Radiation therapy (RT) continues to be one of the mainstays of cancer treatment. Considerable efforts have been recently devoted to integrating MRI into clinical RT planning and monitoring. This integration, known as MRI-guided RT, has been motivated by the superior soft-tissue contrast, organ motion visualization, and ability to monitor tumor and tissue physiologic changes provided by MRI compared with CT. Offline MRI is already used for treatment planning at many institutions. Furthermore, MRI-guided linear accelerator systems, allowing use of MRI during treatment, enable improved adaptation to anatomic changes between RT fractions compared with CT guidance. Efforts are underway to develop real-time MRI-guided intrafraction adaptive RT of tumors affected by motion and MRI-derived biomarkers to monitor treatment response and potentially adapt treatment to physiologic changes. These developments in MRI guidance provide the basis for a paradigm change in treatment planning, monitoring, and adaptation. Key challenges to advancing MRI-guided RT include real-time volumetric anatomic imaging, addressing image distortion because of magnetic field inhomogeneities, reproducible quantitative imaging across different MRI systems, and biologic validation of quantitative imaging. This review describes emerging innovations in offline and online MRI-guided RT, exciting opportunities they offer for advancing research and clinical care, hurdles to be overcome, and the need for multidisciplinary collaboration.


Subject(s)
Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiation Oncology/methods , Radiology, Interventional/methods , Humans
9.
NMR Biomed ; 34(5): e4314, 2021 05.
Article in English | MEDLINE | ID: mdl-32399974

ABSTRACT

Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.


Subject(s)
Magnetic Resonance Imaging , Algorithms , Animals , Brain Neoplasms/diagnostic imaging , Echo-Planar Imaging , Humans , Metabolome , Radio Waves
10.
Magn Reson Med ; 84(3): 1280-1292, 2020 09.
Article in English | MEDLINE | ID: mdl-32086858

ABSTRACT

PURPOSE: To propose a real-time 3D MRI technique called MR SIGnature MAtching (MRSIGMA) for high-resolution volumetric imaging and motion tracking with very low imaging latency. METHODS: MRSIGMA consists of two steps: (1) offline learning of a database of possible 3D motion states and corresponding motion signature ranges and (2) online matching of new motion signatures acquired in real time with prelearned motion states. Specifically, the offline learning step (non-real-time) reconstructs motion-resolved 4D images representing different motion states and assigns a unique motion range to each state. The online matching step (real-time) acquires motion signatures only and selects one of the prelearned 3D motion states for each newly acquired signature, which generates 3D images efficiently in real time. The MRSIGMA technique was evaluated on 15 golden-angle stack-of-stars liver data sets, and the performance of respiratory motion tracking with the online-generated real-time 3D MRI was compared with the corresponding 2D projections acquired in real time. RESULTS: The total latency of generating each 3D image during online matching was about 300 ms, including acquisition of the motion signature data (~138 ms) and corresponding matching process (~150 ms). Linear correlation assessment suggested excellent correlation (R2  = 0.948) between motion displacement measured from the online-generated real-time 3D images and the 2D real-time projections. CONCLUSION: This proof-of-concept study demonstrates the feasibility of MRSIGMA for high-resolution real-time volumetric imaging, which shifts the acquisition and reconstruction burden to an offline learning step and leaves fast online matching for online imaging with very low imaging latency. The MRSIGMA technique can potentially be used for real-time motion tracking in MRI-guided radiation therapy.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Liver , Magnetic Resonance Spectroscopy , Motion
11.
Magn Reson Med ; 83(4): 1291-1309, 2020 04.
Article in English | MEDLINE | ID: mdl-31626381

ABSTRACT

PURPOSE: To use golden-angle radial sampling and compressed sensing (CS) for accelerating mono- and biexponential 3D spin-lattice relaxation time in the rotating frame (T1ρ ) mapping of knee cartilage. METHODS: Golden-angle radial stack-of-stars and Cartesian 3D-T1ρ -weighted knee cartilage datasets (n = 12) were retrospectively undersampled by acceleration factors (AFs) 2-10. CS-based reconstruction using 8 different sparsifying transforms were compared for mono- and biexponential T1ρ -mapping of knee cartilage, including spatio-temporal finite differences, wavelets, dictionary from principal component analysis, and exponential decay models, and also low rank and low rank plus sparse models (L+S). Complex-valued fitting was used and Marchenko-Pastur principal component analysis filtering also tested. RESULTS: Most CS methods performed well for an AF of 2, with relative median normalized absolute deviation below 10% for monoexponential and biexponential mapping. For monoexponential mapping, radial sampling obtained a median normalized absolute deviation below 10% up to AF of 10, while Cartesian obtained this level of error only up to AF of 4. Radial sampling was also better with biexponential T1ρ mapping, with median normalized absolute deviation below 10% up to AF of 6. CONCLUSION: Golden-angle radial acquisitions combined with CS outperformed Cartesian acquisitions for 3D-T1ρ mapping of knee cartilage, being it is a good alternative to Cartesian sampling for reducing scan time and/or improving image and mapping quality. The methods exponential decay models, spatio-temporal finite differences, and low rank obtained the best results for radial sampling patterns.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Knee/diagnostic imaging , Knee Joint/diagnostic imaging , Retrospective Studies
12.
Magn Reson Med ; 81(1): 140-152, 2019 01.
Article in English | MEDLINE | ID: mdl-30058079

ABSTRACT

PURPOSE: To develop a rapid dynamic contrast-enhanced MRI method with high spatial and temporal resolution for small-animal imaging at 7 Tesla. METHODS: An ultra-short echo time (UTE) pulse sequence using a 3D golden-angle radial sampling was implemented to achieve isotropic spatial resolution with flexible temporal resolution. Continuously acquired radial spokes were grouped into subsets for image reconstruction using a multicoil compressed sensing approach (Golden-angle RAdial Sparse Parallel; GRASP). The proposed 3D-UTE-GRASP method with high temporal and spatial resolutions was tested using 7 mice with GL261 intracranial glioma models. RESULTS: Iterative reconstruction with different temporal resolutions and regularization factors λ showed that, in all cases, the cost function decreased to less than 2.5% of its starting value within 20 iterations. The difference between the time-intensity curves of 3D-UTE-GRASP and nonuniform fast Fourier transform (NUFFT) images was minimal when λ was 1% of the maximum signal intensity of the initial NUFFT images. The 3D isotropic images were used to generate pharmacokinetic parameter maps to show the detailed images of the tumor characteristics in 3D and also to show longitudinal changes during tumor growth. CONCLUSION: This feasibility study demonstrated that the proposed 3D-UTE-GRASP method can be used for effective measurement of the 3D spatial heterogeneity of tumor pharmacokinetic parameters.


Subject(s)
Brain Neoplasms/diagnostic imaging , Contrast Media/chemistry , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Algorithms , Animals , Cell Line, Tumor , Data Compression/methods , Feasibility Studies , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Kinetics , Mice , Mice, Inbred C57BL , Microcirculation , Neoplasm Transplantation , Spatio-Temporal Analysis
13.
Magn Reson Med ; 81(2): 863-880, 2019 02.
Article in English | MEDLINE | ID: mdl-30230588

ABSTRACT

PURPOSE: Use compressed sensing (CS) for 3D biexponential spin-lattice relaxation time in the rotating frame (T1ρ ) mapping of knee cartilage, reducing the total scan time and maintaining the quality of estimated biexponential T1ρ parameters (short and long relaxation times and corresponding fractions) comparable to fully sampled scans. METHODS: Fully sampled 3D-T1ρ -weighted data sets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared for biexponential T1ρ -mapping of knee cartilage, including temporal and spatial wavelets and finite differences, dictionary from principal component analysis (PCA), k-means singular value decomposition (K-SVD), exponential decay models, and also low rank and low rank plus sparse models. Synthetic phantom (N = 6) and in vivo human knee cartilage data sets (N = 7) were included in the experiments. Spatial filtering before biexponential T1ρ parameter estimation was also tested. RESULTS: Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative median normalized absolute deviation (MNAD) around 10%. Some sparsifying transforms, such as low rank with spatial finite difference (L + S SFD), spatiotemporal finite difference (STFD), and exponential dictionaries (EXP) significantly improved this performance, reaching MNAD below 15% with AF up to 10, when spatial filtering was used. CONCLUSION: Accelerating biexponential 3D-T1ρ mapping of knee cartilage with CS is feasible. The best results were obtained by STFD, EXP, and L + S SFD regularizers combined with spatial prefiltering. These 3 CS methods performed satisfactorily on synthetic phantom as well as in vivo knee cartilage for AFs up to 10, with median error below 15%.


Subject(s)
Cartilage, Articular/diagnostic imaging , Image Processing, Computer-Assisted/methods , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Acceleration , Adult , Algorithms , Healthy Volunteers , Humans , Imaging, Three-Dimensional , Knee/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Phantoms, Imaging , Principal Component Analysis , Retrospective Studies , Young Adult
14.
J Magn Reson Imaging ; 49(5): 1400-1408, 2019 05.
Article in English | MEDLINE | ID: mdl-30629317

ABSTRACT

BACKGROUND: The value of dynamic contrast-enhanced (DCE) sequences in prostate MRI compared with noncontrast MRI is controversial. PURPOSE: To evaluate the population net benefit of risk stratification using DCE-MRI for detection of high-grade prostate cancer (HGPCA), with or without high spatiotemporal resolution DCE imaging. STUDY TYPE: Decision curve analysis. POPULATION: Previously published patient studies on MRI for HGPCA detection, one using DCE with golden-angle radial sparse parallel (GRASP) images and the other using standard DCE-MRI. FIELD STRENGTH/SEQUENCE: GRASP or standard DCE-MRI at 3 T. ASSESSMENT: Each study reported the proportion of lesions with HGPCA in each Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) category (1-5), before and after reclassification of peripheral zone lesions from PI-RADS 3-4 based on contrast-enhanced images. This additional risk stratifying information was translated to population net benefit, when biopsy was hypothetically performed for: all lesions, no lesions, PI-RADS ≥3 (using NC-MRI), and PI-RADS ≥4 on DCE. STATISTICAL TESTS: Decision curve analysis was performed for both GRASP and standard DCE-MRI data, translating the avoidance of unnecessary biopsies and detection of HGPCA to population net benefit. We standardized net benefit values for HGPCA prevalence and graphically summarized the comparative net benefit of biopsy strategies. RESULTS: For a clinically relevant range of risk thresholds for HGPCA (>11%), GRASP DCE-MRI with biopsy of PI-RADS ≥4 lesions provided the highest net benefit, while biopsy of PI-RADS ≥3 lesions provided highest net benefit at low personal risk thresholds (2-11%). In the same range of risk thresholds using standard DCE-MRI, the optimal strategy was biopsy for all lesions (0-15% risk threshold) or PI-RADS ≥3 on NC-MRI (16-33% risk threshold). DATA CONCLUSION: GRASP DCE-MRI may potentially enable biopsy of PI-RADS ≥4 lesions, providing relatively preserved detection of HGPCA and avoidance of unnecessary biopsies compared with biopsy of all PI-RADS ≥3 lesions. J. Magn. Reson. Imaging 2019;49:1400-1408.


Subject(s)
Contrast Media , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Humans , Male , Middle Aged , Prostate/diagnostic imaging
15.
J Magn Reson Imaging ; 49(2): 411-422, 2019 02.
Article in English | MEDLINE | ID: mdl-30252989

ABSTRACT

BACKGROUND: Computed tomography (CT) and spirometry are the current standard methods for assessing lung anatomy and pulmonary ventilation, respectively. However, CT provides limited ventilation information and spirometry only provides global measures of lung ventilation. Thus, a method that can enable simultaneous examination of lung anatomy and ventilation is of clinical interest. PURPOSE: To develop and test a 4D respiratory-resolved sparse lung MRI (XD-UTE: eXtra-Dimensional Ultrashort TE imaging) approach for simultaneous evaluation of lung anatomy and pulmonary ventilation. STUDY TYPE: Prospective. POPULATION: In all, 23 subjects (11 volunteers and 12 patients, mean age = 63.6 ± 8.4). FIELD STRENGTH/SEQUENCE: 3T MR; a prototype 3D golden-angle radial UTE sequence, a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence. ASSESSMENT: All subjects were scanned using the 3D golden-angle radial UTE sequence during normal breathing. Ten subjects underwent an additional scan during alternating normal and deep breathing. Respiratory-motion-resolved sparse reconstruction was performed for all the acquired data to generate dynamic normal-breathing or deep-breathing image series. For comparison, BH-VIBE was performed in 12 subjects. Lung images were visually scored by three experienced chest radiologists and were analyzed by two observers who segmented the left and right lung to derive ventilation parameters in comparison with spirometry. STATISTICAL TESTS: Nonparametric paired two-tailed Wilcoxon signed-rank test; intraclass correlation coefficient, Pearson correlation coefficient. RESULTS: XD-UTE achieved significantly improved image quality compared both with Cartesian BH-VIBE and radial reconstruction without motion compensation (P < 0.05). The global ventilation parameters (a sum of the left and right lung measures) were in good correlation with spirometry in the same subjects (correlation coefficient = 0.724). There were excellent correlations between the results obtained by two observers (intraclass correlation coefficient ranged from 0.8855-0.9995). DATA CONCLUSION: Simultaneous evaluation of lung anatomy and ventilation using XD-UTE is demonstrated, which have shown good potential for improved diagnosis and management of patients with heterogeneous lung diseases. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:411-422.


Subject(s)
Echo-Planar Imaging , Lung/diagnostic imaging , Magnetic Resonance Imaging , Spirometry , Adult , Aged , Artifacts , Breath Holding , Female , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Lung/pathology , Male , Middle Aged , Motion , Prospective Studies , Respiration , Tomography, X-Ray Computed , Young Adult
16.
Neuroimage ; 174: 138-152, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29526742

ABSTRACT

A novel approach is presented for group statistical analysis of diffusion weighted MRI datasets through voxelwise Orientation Distribution Functions (ODF). Recent advances in MRI acquisition make it possible to use high quality diffusion weighted protocols (multi-shell, large number of gradient directions) for routine in vivo study of white matter architecture. The dimensionality of these data sets is however often reduced to simplify statistical analysis. While these approaches may detect large group differences, they do not fully capitalize on all acquired image volumes. Incorporation of all available diffusion information in the analysis however risks biasing the outcome by outliers. Here we propose a statistical analysis method operating on the ODF, either the diffusion ODF or fiber ODF. To avoid outlier bias and reliably detect voxelwise group differences and correlations with demographic or behavioral variables, we apply the Low-Rank plus Sparse (L+S) matrix decomposition on the voxelwise ODFs which separates the sparse individual variability in the sparse matrix S whilst recovering the essential ODF features in the low-rank matrix L. We demonstrate the performance of this ODF L+S approach by replicating the established negative association between global white matter integrity and physical obesity in the Human Connectome dataset. The volume of positive findings p<0.01,227cm3, agrees with and expands on the volume found by TBSS (17 cm3), Connectivity based fixel enhancement (15 cm3) and Connectometry (212 cm3). In the same dataset we further localize the correlations of brain structure with neurocognitive measures such as fluid intelligence and episodic memory. The presented ODF L+S approach will aid in the full utilization of all acquired diffusion weightings leading to the detection of smaller group differences in clinically relevant settings as well as in neuroscience applications.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , Adult , Algorithms , Female , Humans , Male , Reproducibility of Results , Young Adult
17.
Magn Reson Med ; 80(4): 1475-1491, 2018 10.
Article in English | MEDLINE | ID: mdl-29479738

ABSTRACT

PURPOSE: To evaluate the feasibility of using compressed sensing (CS) to accelerate 3D-T1ρ mapping of cartilage and to reduce total scan times without degrading the estimation of T1ρ relaxation times. METHODS: Fully sampled 3D-T1ρ datasets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared, including finite differences, temporal and spatial wavelets, learned transforms using principal component analysis (PCA) and K-means singular value decomposition (K-SVD), explicit exponential models, low rank and low rank plus sparse models. Spatial filtering prior to T1ρ parameter estimation was also tested. Synthetic phantom (n = 6) and in vivo human knee cartilage datasets (n = 7) were included. RESULTS: Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative T1ρ error lower than 4.5%. Some sparsifying transforms, such as spatiotemporal finite difference (STFD), exponential dictionaries (EXP) and low rank combined with spatial finite difference (L+S SFD) significantly improved this performance, reaching average relative T1ρ error below 6.5% on T1ρ relaxation times with AF up to 10, when spatial filtering was used before T1ρ fitting, at the expense of smoothing the T1ρ maps. The STFD achieved 5.1% error at AF = 10 with spatial filtering prior to T1ρ fitting. CONCLUSION: Accelerating 3D-T1ρ mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T1ρ error of 6.5%.


Subject(s)
Cartilage, Articular/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Databases, Factual , Humans , Phantoms, Imaging , Young Adult
18.
Magn Reson Med ; 80(1): 77-89, 2018 07.
Article in English | MEDLINE | ID: mdl-29193260

ABSTRACT

PURPOSE: To develop and evaluate a novel dynamic contrast-enhanced imaging technique called RACER-GRASP (Respiratory-weighted, Aortic Contrast Enhancement-guided and coil-unstReaking Golden-angle RAdial Sparse Parallel) MRI that extends GRASP to include automatic contrast bolus timing, respiratory motion compensation, and coil-weighted unstreaking for improved imaging performance in liver MRI. METHODS: In RACER-GRASP, aortic contrast enhancement (ACE) guided k-space sorting and respiratory-weighted sparse reconstruction are performed using aortic contrast enhancement and respiratory motion signals extracted directly from the acquired data. Coil unstreaking aims to weight multicoil k-space according to streaking artifact level calculated for each individual coil during image reconstruction, so that coil elements containing a high level of streaking artifacts contribute less to the final results. Self-calibrating GRAPPA operator gridding was applied as a pre-reconstruction step to reduce computational burden in the subsequent iterative reconstruction. The RACER-GRASP technique was compared with standard GRASP reconstruction in a group of healthy volunteers and patients referred for clinical liver MR examination. RESULTS: Compared with standard GRASP, RACER-GRASP significantly improved overall image quality (average score: 3.25 versus 3.85) and hepatic vessel sharpness/clarity (average score: 3.58 versus 4.0), and reduced residual streaking artifact level (average score: 3.23 versus 3.94) in different contrast phases. RACER-GRASP also enabled automatic timing of the arterial phases. CONCLUSIONS: The aortic contrast enhancement-guided sorting, respiratory motion suppression and coil unstreaking introduced by RACER-GRASP improve upon the imaging performance of standard GRASP for free-breathing dynamic contrast-enhanced MRI of the liver. Magn Reson Med 80:77-89, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Aorta/diagnostic imaging , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Respiration , Adult , Algorithms , Artifacts , Breath Holding , Cluster Analysis , Computer Simulation , Contrast Media , Data Compression , Female , Humans , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Male , Middle Aged , Motion , Young Adult
19.
Magn Reson Med ; 79(2): 826-838, 2018 02.
Article in English | MEDLINE | ID: mdl-28497486

ABSTRACT

PURPOSE: A 5D whole-heart sparse imaging framework is proposed for simultaneous assessment of myocardial function and high-resolution cardiac and respiratory motion-resolved whole-heart anatomy in a single continuous noncontrast MR scan. METHODS: A non-electrocardiograph (ECG)-triggered 3D golden-angle radial balanced steady-state free precession sequence was used for data acquisition. The acquired 3D k-space data were sorted into a 5D dataset containing separated cardiac and respiratory dimensions using a self-extracted respiratory motion signal and a recorded ECG signal. Images were then reconstructed using XD-GRASP, a multidimensional compressed sensing technique exploiting correlations/sparsity along cardiac and respiratory dimensions. 5D whole-heart imaging was compared with respiratory motion-corrected 3D and 4D whole-heart imaging in nine volunteers for evaluation of the myocardium, great vessels, and coronary arteries. It was also compared with breath-held, ECG-gated 2D cardiac cine imaging for validation of cardiac function quantification. RESULTS: 5D whole-heart images received systematic higher quality scores in the myocardium, great vessels and coronary arteries. Quantitative coronary sharpness and length were always better for the 5D images. Good agreement was obtained for quantification of cardiac function compared with 2D cine imaging. CONCLUSION: 5D whole-heart sparse imaging represents a robust and promising framework for simplified comprehensive cardiac MRI without the need for breath-hold and motion correction. Magn Reson Med 79:826-838, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Cardiac Imaging Techniques/methods , Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Coronary Vessels/diagnostic imaging , Female , Humans , Male , Young Adult
20.
J Magn Reson Imaging ; 48(5): 1185-1198, 2018 11.
Article in English | MEDLINE | ID: mdl-30295344

ABSTRACT

More than a decade after the introduction of compressed sensing (CS) in MRI, researchers are still working on ways to translate it into different research and clinical applications. The greatest advantage of CS in MRI is the reduced amount of k-space data needed to reconstruct images, which can be exploited to reduce scan time or to improve spatial resolution and volumetric coverage. Efficient data acquisition using CS is extremely important for compositional mapping of the musculoskeletal system in general and knee cartilage mapping techniques in particular. High-resolution quantitative information about tissue biochemical composition could be obtained in just a few minutes using CS MRI. However, in order to make this goal a reality, some issues still need to be addressed. In this article we review the current state of the art of CS methods for rapid compositional mapping of knee cartilage. Specifically, data acquisition strategies, image reconstruction algorithms, and data fitting models are discussed. Different CS studies for T2 and T1ρ mapping of knee cartilage are reviewed, with illustrative results. Future directions, opportunities, and challenges of rapid compositional mapping techniques are also discussed. Level of Evidence: 4 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:1185-1198.


Subject(s)
Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging , Algorithms , Data Compression , Humans , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL