Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(4): 714-728, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38579669

ABSTRACT

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Subject(s)
Argininosuccinate Lyase , Argininosuccinic Aciduria , Humans , Argininosuccinate Lyase/genetics , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/therapy , Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Guide, CRISPR-Cas Systems , Urea , Gene Editing/methods
2.
Mol Ther ; 32(8): 2535-2548, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38867450

ABSTRACT

Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.


Subject(s)
Cell Differentiation , Cell Proliferation , Thymidine , Thymidylate Synthase , Humans , Animals , Mice , Thymidine/metabolism , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Cell- and Tissue-Based Therapy/methods , Cell Line , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , CRISPR-Cas Systems
3.
Diabetologia ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871836

ABSTRACT

AIMS/HYPOTHESIS: Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS: We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS: Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION: [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.

4.
Diabetologia ; 67(8): 1642-1662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38743124

ABSTRACT

AIMS/HYPOTHESIS: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).


Subject(s)
Haploinsufficiency , Insulin-Secreting Cells , Regulatory Factor X Transcription Factors , Insulin-Secreting Cells/metabolism , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Animals , Humans , Mice , Cell Differentiation/genetics , Mice, Inbred NOD , Mice, SCID , Genetic Predisposition to Disease , Female , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Nerve Tissue Proteins
5.
Differentiation ; 128: 83-100, 2022.
Article in English | MEDLINE | ID: mdl-36114074

ABSTRACT

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.


Subject(s)
Induced Pluripotent Stem Cells , Infertility , Humans , Male , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Mutation , Induced Pluripotent Stem Cells/metabolism , Gonads/metabolism , Scavenger Receptors, Class A/genetics
6.
Diabetologia ; 65(6): 917-930, 2022 06.
Article in English | MEDLINE | ID: mdl-35244743

ABSTRACT

The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Cell Differentiation , Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mammals/metabolism
7.
Diabetologia ; 64(3): 630-640, 2021 03.
Article in English | MEDLINE | ID: mdl-33404684

ABSTRACT

AIMS/HYPOTHESIS: Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS: We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS: SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION: We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.


Subject(s)
Congenital Hyperinsulinism/metabolism , Induced Pluripotent Stem Cells/metabolism , Islets of Langerhans/metabolism , Sulfonylurea Receptors/metabolism , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/pathology , Congenital Hyperinsulinism/physiopathology , Female , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/transplantation , Insulin Secretion , Islets of Langerhans/pathology , Islets of Langerhans/physiopathology , Islets of Langerhans Transplantation , Male , Mice, Inbred NOD , Mice, SCID , Mutation , Phenotype , Sulfonylurea Receptors/genetics
8.
Neurobiol Dis ; 141: 104940, 2020 07.
Article in English | MEDLINE | ID: mdl-32437855

ABSTRACT

Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Motor Neurons/metabolism , Parkinson Disease/genetics , Synapses/metabolism , Transcription Factors/metabolism , Transcriptome , Amyotrophic Lateral Sclerosis/metabolism , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/metabolism , Membrane Potentials , Mitochondria/metabolism , Parkinson Disease/metabolism
9.
Stem Cells ; 37(1): 33-41, 2019 01.
Article in English | MEDLINE | ID: mdl-30270471

ABSTRACT

Pancreatic ß-cells are the only source of insulin. Disturbances in ß-cell development or function may thus result in insulin deficiency or excess, presenting as hyper- or hypoglycemia. It is increasingly evident that common forms of diabetes (types 1 and 2) are pathogenically heterogeneous. Development of efficient therapies is dependent on reliable disease models. Although animal models are remarkably useful research tools, they present limitations because of species differences. As an alternative, human pluripotent stem cell technologies offer multiple possibilities for the study of human diseases in vitro. In the last decade, advances in the derivation of induced pluripotent stem cells from diabetic patients, combined with ß-cell differentiation protocols, have resulted in the generation of useful disease models for diabetes. First disease models have been focusing on monogenic diabetes. The development of genome editing technologies, more advanced differentiation protocols and humanized mouse models based on transplanted cells have opened new horizons for the modeling of more complex forms of ß-cell dysfunction. We present here the incremental progress made in the modeling of diabetes using pluripotent stem cells. We discuss the current challenges and opportunities of these approaches to dissect ß-cell pathology and devise new pharmacological and cell replacement therapies. Stem Cells 2019;37:33-41.


Subject(s)
Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/pathology , Animals , Cell Differentiation , Humans , Mice
10.
Nucleic Acids Res ; 46(19): 10302-10318, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30247717

ABSTRACT

Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic ß-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in ß-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced ß-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic ß-cell demise relevant to monogenic and polygenic forms of diabetes.


Subject(s)
DNA Methylation , Diabetes Mellitus/genetics , Insulin-Secreting Cells/metabolism , Methyltransferases/genetics , RNA, Transfer/metabolism , Aged , Animals , Apoptosis/genetics , Cell Death/genetics , Cell Differentiation/genetics , Cells, Cultured , DNA Fragmentation , Diabetes Mellitus/metabolism , Genetic Linkage , Humans , Induced Pluripotent Stem Cells/physiology , Insulin-Secreting Cells/physiology , Methyltransferases/deficiency , Methyltransferases/metabolism , Middle Aged , Mutation , Rats
11.
Diabetologia ; 62(8): 1329-1336, 2019 08.
Article in English | MEDLINE | ID: mdl-31161346

ABSTRACT

Understanding the molecular mechanisms behind beta cell dysfunction is essential for the development of effective and specific approaches for diabetes care and prevention. Physiological human beta cell models are needed for this work. We review the possibilities and limitations of currently available human beta cell models and how they can be dramatically enhanced using genome-editing technologies. In addition to the gold standard, primary isolated islets, other models now include immortalised human beta cell lines and pluripotent stem cell-derived islet-like cells. The scarcity of human primary islet samples limits their use, but valuable gene expression and functional data from large collections of human islets have been made available to the scientific community. The possibilities for studying beta cell physiology using immortalised human beta cell lines and stem cell-derived islets are rapidly evolving. However, the functional immaturity of these cells is still a significant limitation. CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) has enabled precise engineering of specific genetic variants, targeted transcriptional modulation and genome-wide genetic screening. These approaches can now be exploited to gain understanding of the mechanisms behind coding and non-coding diabetes-associated genetic variants, allowing more precise evaluation of their contribution to diabetes pathogenesis. Despite all the progress, genome editing in primary pancreatic islets remains difficult to achieve, an important limitation requiring further technological development.


Subject(s)
Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Gene Editing , Genome, Human , Insulin-Secreting Cells/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Gene Editing/trends , Gene Silencing , Genetic Variation , Genotype , Humans , Pluripotent Stem Cells , Polymorphism, Single Nucleotide , Risk
12.
Diabetologia ; 61(10): 2202-2214, 2018 10.
Article in English | MEDLINE | ID: mdl-30032427

ABSTRACT

AIMS/HYPOTHESIS: There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress. Given this novel association between MANF and beta cell death, we studied the potential of MANF to protect human beta cells against experimentally induced ER stress. METHODS: Primary human islets were challenged with proinflammatory cytokines, with or without MANF. Cell viability was analysed and global transcriptomic analysis performed. Results were further validated using the human beta cell line EndoC-ßH1. RESULTS: There was increased expression and secretion of MANF in human beta cells in response to cytokines. Addition of recombinant human MANF reduced cytokine-induced cell death by 38% in human islets (p < 0.05). MANF knockdown in EndoC-ßH1 cells led to increased ER stress after cytokine challenge. Mechanistic studies showed that the protective effect of MANF was associated with repression of the NF-κB signalling pathway and amelioration of ER stress. MANF also increased the proliferation of primary human beta cells twofold when TGF-ß signalling was inhibited (p < 0.01). CONCLUSIONS/INTERPRETATION: Our studies show that exogenous MANF protein can provide protection to human beta cells against death induced by inflammatory stress. The antiapoptotic and mitogenic properties of MANF make it a potential therapeutic agent for beta cell protection.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Insulin-Secreting Cells/cytology , Nerve Growth Factors/metabolism , Astrocytes/metabolism , Cell Death/drug effects , Cell Proliferation , Cell Survival , Cells, Cultured , Cytokines/metabolism , Humans , Inflammation , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , NF-kappa B/metabolism , RNA, Small Interfering/metabolism , Recombinant Proteins/metabolism , Signal Transduction , Transcriptome
13.
Blood ; 125(4): 639-48, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25349174

ABSTRACT

The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of immunodysregulation polyendocrinopathy enteropathy X-linked-like syndrome. Here, we immunologically characterized 3 patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T, and p.K658N, respectively). The patients displayed multiorgan autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B-cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4(-)CD8(-)) T cells, and decreased natural killer, T helper 17, and regulatory T-cell numbers. Notably, the patient harboring the K392R mutation developed T-cell large granular lymphocytic leukemia at age 14 years. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.


Subject(s)
Agammaglobulinemia , Autoimmune Diseases , Genetic Diseases, Inborn , Leukemia, Large Granular Lymphocytic , Mutation, Missense , Mycobacterium Infections , STAT3 Transcription Factor , Adolescent , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Agammaglobulinemia/pathology , Amino Acid Substitution , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/immunology , Leukemia, Large Granular Lymphocytic/pathology , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/pathology , Protein Structure, Tertiary , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/immunology , Th17 Cells/pathology
14.
Nature ; 471(7336): 58-62, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21368824

ABSTRACT

The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.


Subject(s)
Cellular Reprogramming/genetics , DNA Copy Number Variations/genetics , Induced Pluripotent Stem Cells/metabolism , Selection, Genetic , Cell Line , Chromosome Fragile Sites/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Haplotypes/genetics , Humans , In Situ Hybridization, Fluorescence , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/pathology , Mosaicism , Mutagenesis/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Selection, Genetic/genetics
15.
J Cell Sci ; 127(Pt 9): 2083-94, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24569875

ABSTRACT

Neural crest cells are specified at the border between the neural plate and the epiderm. They are capable of differentiating into various somatic cell types, including craniofacial and peripheral nerve tissues. Notch signaling plays important roles during neurogenesis; however, its function during human neural crest development is poorly understood. Here, we generated self-renewing premigratory neural-crest-like cells (pNCCs) from human pluripotent stem cells (hPSCs) and investigated the roles of Notch signaling during neural crest differentiation. pNCCs expressed various neural-crest-specifier genes, including SLUG (also known as SNAI2), SOX10 and TWIST1, and were able to differentiate into most neural crest derivatives. Blocking Notch signaling during the pNCC differentiation suppressed the expression of neural-crest-specifier genes. By contrast, ectopic expression of activated Notch1 intracellular domain (NICD1) augmented the expression of neural-crest-specifier genes, and NICD1 was found to bind to their promoter regions. Notch activity was also required for the maintenance of the premigratory neural crest state, and the suppression of Notch signaling led to the generation of neural-crest-derived neurons. Taken together, we provide a protocol for the generation of pNCCs and show that Notch signaling regulates the formation, migration and differentiation of neural crest from hPSCs.


Subject(s)
Cell Differentiation/physiology , Neural Crest/cytology , Pluripotent Stem Cells/cytology , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/physiology , Humans , Neural Crest/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pluripotent Stem Cells/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Signal Transduction/physiology , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
16.
Proc Natl Acad Sci U S A ; 110(38): E3622-30, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-24003133

ABSTRACT

Mitochondrial DNA (mtDNA) mutations manifest with vast clinical heterogeneity. The molecular basis of this variability is mostly unknown because the lack of model systems has hampered mechanistic studies. We generated induced pluripotent stem cells from patients carrying the most common human disease mutation in mtDNA, m.3243A>G, underlying mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. During reprogramming, heteroplasmic mtDNA showed bimodal segregation toward homoplasmy, with concomitant changes in mtDNA organization, mimicking mtDNA bottleneck during epiblast specification. Induced pluripotent stem cell-derived neurons and various tissues derived from teratomas manifested cell-type specific respiratory chain (RC) deficiency patterns. Similar to MELAS patient tissues, complex I defect predominated. Upon neuronal differentiation, complex I specifically was sequestered in perinuclear PTEN-induced putative kinase 1 (PINK1) and Parkin-positive autophagosomes, suggesting active degradation through mitophagy. Other RC enzymes showed normal mitochondrial network distribution. Our data show that cellular context actively modifies RC deficiency manifestation in MELAS and that autophagy is a significant component of neuronal MELAS pathogenesis.


Subject(s)
DNA, Mitochondrial/genetics , Electron Transport Complex I/metabolism , Induced Pluripotent Stem Cells/metabolism , MELAS Syndrome/genetics , Neurons/metabolism , Blotting, Western , Electron Transport/genetics , Fluorescent Antibody Technique , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , MELAS Syndrome/metabolism , Microsatellite Repeats/genetics , Microscopy, Electron , Microscopy, Fluorescence , Phagosomes/metabolism , Point Mutation/genetics , Protein Kinases/metabolism , Statistics, Nonparametric
17.
N Engl J Med ; 366(5): 433-42, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22296077

ABSTRACT

BACKGROUND: The 65-kD isoform of glutamic acid decarboxylase (GAD65) is a major autoantigen in type 1 diabetes. We hypothesized that alum-formulated GAD65 (GAD-alum) can preserve beta-cell function in patients with recent-onset type 1 diabetes. METHODS: We studied 334 patients, 10 to 20 years of age, with type 1 diabetes, fasting C-peptide levels of more than 0.3 ng per milliliter (0.1 nmol per liter), and detectable serum GAD65 autoantibodies. Within 3 months after diagnosis, patients were randomly assigned to receive one of three study treatments: four doses of GAD-alum, two doses of GAD-alum followed by two doses of placebo, or four doses of placebo. The primary outcome was the change in the stimulated serum C-peptide level (after a mixed-meal tolerance test) between the baseline visit and the 15-month visit. Secondary outcomes included the glycated hemoglobin level, mean daily insulin dose, rate of hypoglycemia, and fasting and maximum stimulated C-peptide levels. RESULTS: The stimulated C-peptide level declined to a similar degree in all study groups, and the primary outcome at 15 months did not differ significantly between the combined active-drug groups and the placebo group (P=0.10). The use of GAD-alum as compared with placebo did not affect the insulin dose, glycated hemoglobin level, or hypoglycemia rate. Adverse events were infrequent and mild in the three groups, with no significant differences. CONCLUSIONS: Treatment with GAD-alum did not significantly reduce the loss of stimulated C peptide or improve clinical outcomes over a 15-month period. (Funded by Diamyd Medical and the Swedish Child Diabetes Foundation; ClinicalTrials.gov number, NCT00723411.).


Subject(s)
C-Peptide/blood , Diabetes Mellitus, Type 1/drug therapy , Glutamate Decarboxylase/therapeutic use , Adolescent , Autoantibodies/blood , Child , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/immunology , Female , Glutamate Decarboxylase/adverse effects , Glutamate Decarboxylase/immunology , Humans , Male , Protein Isoforms , Young Adult
18.
Diabetologia ; 57(5): 970-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24493201

ABSTRACT

AIMS/HYPOTHESIS: EGF receptor (EGFR) signalling is required for normal beta cell development and postnatal beta cell proliferation. We tested whether beta cell proliferation can be triggered by EGFR activation at any age and whether this can protect beta cells against apoptosis induced by diabetogenic insults in a mouse model. METHODS: We generated transgenic mice with doxycycline-inducible expression of constitutively active EGFR (L858R) (CA-EGFR) under the insulin promoter. Mice were given doxycycline at various ages for different time periods, and beta cell proliferation and mass were analysed. Mice were also challenged with streptozotocin and isolated islets exposed to cytokines. RESULTS: Expression of EGFR (L858R) led to increased phosphorylation of EGFR and Akt in pancreatic islets. CA-EGFR expression during pancreatic development (embryonic day [E]12.5 to postnatal day [P]1) increased beta cell proliferation and mass in newborn mice. However, CA-EGFR expression in adult mice did not affect beta cell mass. Expression of the transgene improved glycaemia and markedly inhibited beta cell apoptosis after a single high dose, as well as after multiple low doses of streptozotocin. In vitro mechanistic studies showed that CA-EGFR protected isolated islets from cytokine-mediated beta cell death, possibly by repressing the proapoptotic protein BCL2-like 11 (BIM). CONCLUSIONS/INTERPRETATION: Our findings show that the expression of CA-EGFR in the developing, but not in the adult pancreas stimulates beta cell replication and leads to increased beta cell mass. Importantly, CA-EGFR protects beta cells against streptozotocin- and cytokine-induced death.


Subject(s)
Diabetes Mellitus/genetics , ErbB Receptors/genetics , Insulin-Secreting Cells/metabolism , Pancreas/embryology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis , Blood Glucose/analysis , Cell Death , Cell Proliferation , Cell Survival , Diabetes Mellitus/enzymology , Enzyme Activation , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Phosphorylation , Signal Transduction
19.
Exp Cell Res ; 319(17): 2535-44, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23954819

ABSTRACT

Activin/Nodal and Wnt signaling are known to play important roles in the regional specification of endoderm. Here we have investigated the effect of the length of stimulation with Activin A plus Wnt3a on the development of hepatic and pancreatic progenitors from the definitive endoderm (DE) cells derived from human pluripotent stem cells (hPSC). We show that DE-cells derived from hPSC with 3 days high Activin A and Wnt3a treatment were able to differentiate further into both tested endodermal lineages. When prolonging the DE-induction protocol from 3 to 5 or 7 days, almost pure DE-marker positive cell populations were obtained. However, these cells had an impaired pancreatic differentiation capacity, while they still developed into hepatocyte-like cells. Further propagation of the DE-cells in the presence of Wnt3a and Activin A led to the complete loss of differentiation capacity into hepatic or pancreatic lineages. When Wnt3a was removed after 24h from the initiation of the differentiation, the cells were able to differentiate into PDX1+/NKX6.1+ pancreatic progenitors even with longer DE induction time while efficiency of hepatic differentiation was lower. Our results suggest that both the length and the timing of Wnt3a treatment during DE induction are crucial for the final differentiation outcome. Although it is possible to derive apparently pure DE cells with prolonged Activin A/Wnt-stimulation, their progenitor capacity is restricted to a limited time window.


Subject(s)
Activins/pharmacology , Cell Differentiation/drug effects , Endoderm/cytology , Wnt3A Protein/pharmacology , Cell Lineage , Embryonic Induction , Hepatocytes/cytology , Hepatocytes/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Pancreas/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
20.
Duodecim ; 130(8): 785-92, 2014.
Article in Fi | MEDLINE | ID: mdl-24822328

ABSTRACT

Pluripotent stem cells are capable of differentiating into cells of any tissue. The fact that iPS cell lines can be produced from skin cells or blood cells and directed to differentiate into a desired direction makes it possible to investigate e.g. myocardial or nerve cells having a disease-associated genotype. This will enable the development of experimental models of disease mechanisms and also apply them to drug screening, which may allow the development of novel types of treatment. In the future it may become possible to replace injured cells of a patient with autologous iPS cell derived transplants.


Subject(s)
Biomedical Research , Induced Pluripotent Stem Cells/physiology , Cell Culture Techniques , Cell Differentiation , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL