Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 20(1): 527, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31242867

ABSTRACT

BACKGROUND: Breeding programs benefit from information about marker-trait associations for many traits, whether the goal is to place those traits under active selection or to maintain them through background selection. Association studies are also important for identifying accessions bearing potentially useful alleles by characterizing marker-trait associations and allelic states across germplasm collections. This study reports the results of a genome-wide association study and evaluation of epistatic interactions for four agronomic and seed-related traits in soybean. RESULTS: Using 419 diverse soybean accessions, together with genotyping data from the SoySNP50K Illumina Infinium BeadChip, we identified marker-trait associations for internode number (IN), plant height (PH), seed weight (SW), and seed yield per plant (SYP). We conducted a genome-wide epistatic study (GWES), identifying candidate genes that show evidence of SNP-SNP interactions. Although these candidate genes will require further experimental validation, several appear to be involved in developmental processes related to the respective traits. For IN and PH, these include the Dt1 determinacy locus (a soybean meristematic transcription factor), as well as a pectinesterase gene and a squamosa promoter binding gene that in other plants are involved in cell elongation and the vegetative-to-reproductive transition, respectively. For SW, candidate genes include an ortholog of the AP2 gene, which in other species is involved in maintaining seed size, embryo size, seed weight and seed yield. Another SW candidate gene is a histidine phosphotransfer protein - orthologs of which are involved in cytokinin-mediated seed weight regulating pathways. The SYP association loci overlap with regions reported in previous QTL studies to be involved in seed yield. CONCLUSIONS: This study further confirms the utility of GWAS and GWES approaches for identifying marker-trait associations and interactions within a diverse germplasm collection.


Subject(s)
Epistasis, Genetic , Genome-Wide Association Study , Glycine max/growth & development , Glycine max/genetics , Seeds/growth & development , Genotype , Organ Size , Polymorphism, Single Nucleotide
2.
BMC Genomics ; 20(1): 481, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185892

ABSTRACT

BACKGROUND: Due to the recent domestication of peanut from a single tetraploidization event, relatively little genetic diversity underlies the extensive morphological and agronomic diversity in peanut cultivars today. To broaden the genetic variation in future breeding programs, it is necessary to characterize germplasm accessions for new sources of variation and to leverage the power of genome-wide association studies (GWAS) to discover markers associated with traits of interest. We report an analysis of linkage disequilibrium (LD), population structure, and genetic diversity, and examine the ability of GWA to infer marker-trait associations in the U.S. peanut mini core collection genotyped with a 58 K SNP array. RESULTS: LD persists over long distances in the collection, decaying to r2 = half decay distance at 3.78 Mb. Structure within the collection is best explained when separated into four or five groups (K = 4 and K = 5). At K = 4 and 5, accessions loosely clustered according to market type and subspecies, though with numerous exceptions. Out of 107 accessions, 43 clustered in correspondence to the main market type subgroup whereas 34 did not. The remaining 30 accessions had either missing taxonomic classification or were classified as mixed. Phylogenetic network analysis also clustered accessions into approximately five groups based on their genotypes, with loose correspondence to subspecies and market type. Genome wide association analysis was performed on these lines for 12 seed composition and quality traits. Significant marker associations were identified for arachidic and behenic fatty acid compositions, which despite having low bioavailability in peanut, have been reported to raise cholesterol levels in humans. Other traits such as blanchability showed consistent associations in multiple tests, with plausible candidate genes. CONCLUSIONS: Based on GWA, population structure as well as additional simulation results, we find that the primary limitations of this collection for GWAS are a small collection size, significant remaining structure/genetic similarity and long LD blocks that limit the resolution of association mapping. These results can be used to improve GWAS in peanut in future studies - for example, by increasing the size and reducing structure in the collections used for GWAS.


Subject(s)
Arachis/genetics , Genetic Variation , Linkage Disequilibrium , Chromosomes, Plant/genetics , Gene Frequency , Genome-Wide Association Study , Haplotypes , Phylogeny , Polymorphism, Single Nucleotide , Population Dynamics
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751378

ABSTRACT

The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here, we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect-increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanuts, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (P-value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.


Subject(s)
Arachis , Fatty Acids , Arachis/genetics , Fatty Acids/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/genetics
4.
Sci Data ; 8(1): 50, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558550

ABSTRACT

We report characteristics of soybean genetic diversity and structure from the resequencing of 481 diverse soybean accessions, comprising 52 wild (Glycine soja) selections and 429 cultivated (Glycine max) varieties (landraces and elites). This data was used to identify 7.8 million SNPs, to predict SNP effects relative to genic regions, and to identify the genetic structure, relationships, and linkage disequilibrium. We found evidence of distinct, mostly independent selection of lineages by particular geographic location. Among cultivated varieties, we identified numerous highly conserved regions, suggesting selection during domestication. Comparisons of these accessions against the whole U.S. germplasm genotyped with the SoySNP50K iSelect BeadChip revealed that over 95% of the re-sequenced accessions have a high similarity to their SoySNP50K counterparts. Probable errors in seed source or genotype tracking were also identified in approximately 5% of the accessions.


Subject(s)
Genome, Plant , Glycine max/genetics , Polymorphism, Single Nucleotide , Crops, Agricultural/genetics , Fabaceae/genetics , Genotype , Geography , Linkage Disequilibrium , Selection, Genetic
5.
G3 (Bethesda) ; 10(11): 4013-4026, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32887672

ABSTRACT

Cultivated peanut (Arachis hypogaea) is an important oil, food, and feed crop worldwide. The USDA peanut germplasm collection currently contains 8,982 accessions. In the 1990s, 812 accessions were selected as a core collection on the basis of phenotype and country of origin. The present study reports genotyping results for the entire available core collection. Each accession was genotyped with the Arachis_Axiom2 SNP array, yielding 14,430 high-quality, informative SNPs across the collection. Additionally, a subset of 253 accessions was replicated, using between two and five seeds per accession, to assess heterogeneity within these accessions. The genotypic diversity of the core is mostly captured in five genotypic clusters, which have some correspondence with botanical variety and market type. There is little genetic clustering by country of origin, reflecting peanut's rapid global dispersion in the 18th and 19th centuries. A genetic cluster associated with the hypogaea/aequatoriana/peruviana varieties, with accessions coming primarily from Bolivia, Peru, and Ecuador, is consistent with these having been the earliest landraces. The genetics, phenotypic characteristics, and biogeography are all consistent with previous reports of tetraploid peanut originating in Southeast Bolivia. Analysis of the genotype data indicates an early genetic radiation, followed by regional distribution of major genetic classes through South America, and then a global dissemination that retains much of the early genetic diversity in peanut. Comparison of the genotypic data relative to alleles from the diploid progenitors also indicates that subgenome exchanges, both large and small, have been major contributors to the genetic diversity in peanut.


Subject(s)
Arachis , Genetic Variation , Alleles , Arachis/genetics , Genotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL