Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Phys Chem Chem Phys ; 26(12): 9155-9169, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38165855

ABSTRACT

Src homology 2-domain-containing tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase that is widely expressed in a variety of cells and regulates the immune response of T cells through the PD-1 pathway. However, the activation mechanism and allosteric effects of SHP2 remain unclear, hindering the development of small molecule inhibitors. For the first time, in this study, the complex structure formed by the intact PD-1 tail and SHP2 was modeled. The molecular recognition and conformational changes of inactive/active SHP2 versus ITIM/ITSM were compared based on prolonged MD simulations. The relative flexibility of the two SH2 domains during MD simulations contributes to the recruitment of ITIM/ITSM and supports the subsequent conformational change of SHP2. The binding free energy calculation shows that inactive SHP2 has a higher affinity for ITIM/ITSM than active SHP2, mainly because the former's N-SH2 refers to the α-state. In addition, a significant decrease in the contribution to the binding energy of certain residues (e.g., R32, S34, K35, T42, and K55) of conformationally transformed SHP2 contributes to the above result. These detailed changes during conformational transition will provide theoretical guidance for the molecular design of subsequent novel anticancer drugs.


Subject(s)
Programmed Cell Death 1 Receptor , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , src Homology Domains
2.
Environ Res ; 248: 118338, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38316390

ABSTRACT

The study investigated the influences of pure H2 and O2 introduction, simulating gases produced from the electrokinetic-enhanced bioremediation (EK-Bio), on TCE degradation, and the dynamic changes of the indigenous microbial communities. The dissolved hydrogen (DH) and oxygen (DO) concentrations ranged from 0.2 to 0.7 mg/L and 2.6 to 6.6 mg/L, respectively. The biological analysis was conducted by 16S rRNA sequencing and functional gene analyses. The results showed that the H2 introduction enhanced TCE degradation, causing a 90.4% TCE removal in the first 4 weeks, and 131.1 µM was reduced eventually. Accordingly, cis-dichloroethylene (cis-DCE) was produced as the only product. The following three ways should be responsible for this promoted TCE degradation. Firstly, the high DH rapidly reduced the oxidation-reduction potential (ORP) value to around -500 mV, beneficial to TCE microbial dechlorination. Secondly, the high DH significantly changed the community and promoted the enrichment of TCE anaerobic dechlorinators, such as Sulfuricurvum, Sulfurospirillum, Shewanella, Geobacter, and Desulfitobacterium, and increased the abundance of dechlorination gene pceA. Thirdly, the high DH promoted preferential TCE dechlorination and subsequent sulfate reduction. However, TCE bio-remediation did not occur in a high DO environment due to the reduced aerobic function or lack of functional bacteria or co-metabolic substrate. The competitive dissolved organic carbon (DOC) consumption and unfriendly microbe-microbe interactions also interpreted the non-degradation of TCE in the high DO environment. These results provided evidence for the mechanism of EK-Bio. Providing anaerobic obligate dechlorinators, and aerobic metabolic bacteria around the electrochemical cathodes and anodes, respectively, or co-metabolic substrates to the anode can be feasible methods to promote remediation of TCE-contaminated shallow aquifer under EK-Bio technology.


Subject(s)
Trichloroethylene , Biodegradation, Environmental , Trichloroethylene/analysis , Trichloroethylene/metabolism , RNA, Ribosomal, 16S , Bacteria/metabolism , Hydrogen/analysis , Hydrogen/metabolism , Oxygen/analysis , Oxygen/metabolism
3.
J Enzyme Inhib Med Chem ; 39(1): 2353711, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38887057

ABSTRACT

The PD-1/PD-L1 pathway is considered as one of the most promising immune checkpoints in tumour immunotherapy. However, researchers are faced with the inherent limitations of antibodies, driving them to pursue PD-L1 small molecule inhibitors. Virtual screening followed by experimental validation is a proven approach to discover active compounds. In this study, we employed multistage virtual screening methods to screen multiple compound databases to predict new PD-1/PD-L1 ligands. 35 compounds were proposed by combined analysis of fitness scores, interaction pattern and MM-GBSA binding affinities. Enzymatic assay confirmed that 10 out of 35 ligands were potential PD-L1 inhibitors, with inhibitory rate higher than 50% at the concentration of 30 µM. Among them, ZDS20 was identified as the most effective inhibitor with low micromolar activity (IC50 = 3.27 µM). Altogether, ZDS20 carrying novel scaffold was identified and could serve as a lead for the development of new classes of PD-L1 inhibitors.


Subject(s)
B7-H1 Antigen , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Programmed Cell Death 1 Receptor , Small Molecule Libraries , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Structure-Activity Relationship , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Molecular Structure , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemical synthesis , Immune Checkpoint Inhibitors/chemistry , Ligands
4.
Medicine (Baltimore) ; 103(10): e37248, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457543

ABSTRACT

INTRODUCTION: In rare occasions, coxsackievirus infections can cause serious illness, such as encephalitis and myocarditis. The immunotherapies of cancer could increase the risk of myocarditis, especially when applying immune checkpoint inhibitors. Herein, we report a rare case of Coxsackie B virus-induced myocarditis in a patient with a history of lymphoma. CASE PRESENTATION: A 32-year-old woman was admitted to the hospital with recurrent fever for more than 20 days, and she had a history of lymphoma. Before admission, the positron emission tomography/computed tomography result indicated that the patient had no tumor progression, and she was not considered the cancer-related fever upon arriving at our hospital. Patient's red blood cell, platelet count, and blood pressure were decreased. In addition, she had sinus bradycardia and 3 branch blocks, which was consistent with acute high lateral and anterior wall myocardial infarction. During hospitalization, the patient had recurrent arrhythmia, repeated sweating, poor mentation, dyspnea, and Coxsackie B virus were detected in patient's blood samples by pathogen-targeted next-generation sequencing. The creatine kinase, creatine kinase MB, and N-terminal pro-brain natriuretic peptide were persistently elevated. Consequently, the patient was diagnosed with viral myocarditis induced by Coxsackie B virus, and treated with acyclovir, gamma globulin combined with methylprednisolone shock therapy, trimetazidine, levosimendan, sildenan, continuous pump pressors with m-hydroxylamine, entecavir, adefovir, glutathione, pantoprazole, and low-molecular-weight heparin. Her symptoms worsened and died. CONCLUSION: We reported a case with a history of lymphoma presented with fever, myocardial injury, who was ultimately diagnosed with Coxsackie B virus-induced myocarditis. Moreover, pathogen-targeted next-generation sequencing indeed exhibited higher sensitivity compared to mNGS in detecting Coxsackie B virus.


Subject(s)
Coxsackievirus Infections , Lymphoma , Myocarditis , Virus Diseases , Humans , Female , Adult , Myocarditis/diagnosis , Myocarditis/etiology , Enterovirus B, Human , Coxsackievirus Infections/complications , Coxsackievirus Infections/diagnosis , Fever
5.
J Mol Model ; 30(2): 39, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224406

ABSTRACT

CONTEXT: Mycobacterial membrane proteins Large 3 (MmpL3) is responsible for the transport of mycobacterial acids out of cell membrane to form cell wall, which is essential for the survival of Mycobacterium tuberculosis (Mtb) and has become a potent anti-tuberculosis target. SQ109 is an ethambutol (EMB) analogue, as a novel anti-tuberculosis drug, can effectively inhibit MmpL3, and has completed phase 2b-3 clinical trials. Drug resistance has always been the bottleneck problem in clinical treatment of tuberculosis. The S288T mutant of MmpL3 shows significant resistance to the inhibitor SQ109, while the specific action mechanism remains unclear. The results show that MmpL3 S288T mutation causes local conformational change with little effect on the global structure. With MmpL3 bound by SQ109 inhibitor, the distance between D710 and R715 increases resulting in H-bond destruction, but their interactions and proton transfer function are still restored. In addition, the rotation of Y44 in the S288T mutant leads to an obvious bend in the periplasmic domain channel and an increased number of contact residues, reducing substrate transport efficiency. This work not only provides a possible dual drug resistance mechanism of MmpL3 S288T mutant but also aids the development of novel anti-tuberculosis inhibitors. METHODS: In this work, molecular dynamics (MD) and quantum mechanics (QM) simulations both were performed to compare inhibitor (i.e., SQ109) recognition, motion characteristics, and H-bond energy change of MmpL3 after S288T mutation. In addition, the WT_SQ109 complex structure was obtained by molecular docking program (Autodock 4.2); Molecular Mechanics/ Poisson Boltzmann Surface Area (MM-PBSA) and Solvated Interaction Energy (SIE) methods were used to calculate the binding free energies (∆Gbind); Geometric criteria were used to analyze the changes of hydrogen bond networks.


Subject(s)
Adamantane/analogs & derivatives , Ethylenediamines , Mycobacterium tuberculosis , Protons , Molecular Docking Simulation , Ion Channels , Cell Membrane , Mycobacterium tuberculosis/genetics
6.
Inflammation ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773023

ABSTRACT

Cancer therapy has entered a new era with the use of programmed cell death protein 1 (PD-1) immune checkpoint inhibitors. When combined with thoracic radiotherapy, it demonstrates synergistic anti-tumor effects and potentially worsens radiation-induced myocardial fibrosis (RIMF). RIMF is the final stage of radiation-induced heart disease (RIHD) and a potentially fatal clinical complication of chest radiotherapy. It is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure, and even sudden cardiac death. Pyroptosis, a type of programmed cell death, is mediated by members of the gasdermin (GSDM) family and has been associated with numerous cardiac disorders. The effect of pyroptosis on myocardial fibrosis caused by a combination of radiotherapy and PD-1 inhibitors remains uncertain. In this study, a 6MV X-ray of 20 Gy for local heart irradiation was used in the RIHD mouse model. We noticed that PD-1 inhibitors aggravated radiation-induced cardiac dysfunction and RIMF, concurrently enhancing the presence of CD8+ T lymphocytes in the cardiac tissue. Additionally, our findings indicated that the combination of PD-1 inhibitor and thoracic radiation can stimulate caspase-1 to cleave GSDMD, thereby regulating pyroptosis and liberating interleukin-8 (IL-18). In the myocardium of mice, the manifestation of pyroptosis mediated by GSDMD is accompanied by the buildup of proteins associated with fibrosis, such as collagen I, transforming growth factor ß1 (TGF-ß1), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor α (TNF-α). Moreover, it was discovered that TFG-ß1 induced the phosphorylation of Smad2/Smad3 when the cardiac underwent PD-1 inhibitor in conjunction with thoracic irradiation (IR). The findings of this research indicate that PD-1 inhibitor worsen RIMF in mice by triggering GSDMD-induced pyroptosis and influencing the TGF-ß1/Smads pathway. While using the caspase-1 inhibitor Z-YVAD-FMK, RIMF can be alleviated. Blocking GSDMD may be a viable strategy for managing myocardial fibrosis caused by the combination of PD-1 inhibitors and radiotherapy.

7.
PLoS One ; 19(8): e0306632, 2024.
Article in English | MEDLINE | ID: mdl-39173044

ABSTRACT

The traditional Chinese medicine (TCM) bupleurum-ginger-licorice formula presents significant anti-cancer effects, but its active ingredients and inhibitory mechanism remain unclear. In this work, the core effective ingredient quercetin and its signal transducer and activator of transcription 3 (Stat3) receptor both were identified by network pharmacology. Quercetin is a low-toxicity, non-carcinogenic flavonoid with antioxidant, anti-inflammatory and anticancer activities, which is widely distributed in edible plants. Stat3 can bind to specific DNA response elements and serves as a transcription factor to promote the translation of some invasion/migration-related target genes, considered as a potential anticancer target. Here, molecular docking and molecular dynamics (MD) simulation both were used to explore molecular recognition of quercetin with Stat3. The results show that quercetin impairs DNA transcription efficiency by hindering Stat3 dimerization, partially destroying DNA conformation. Specifically, when the ligand occupies the SH2 cavity of the enzyme, spatial rejection is not conductive to phosphokinase binding. It indirectly prevents the phosphorylation of Y705 and the formation of Stat3 dimer. When the inhibitor binds to the DT1005 position, it obviously shortens the distance between DNA and DBD, enhances their binding capacity, and thereby reduces the degree of freedom required for transcription. This work not only provides the binding modes between Stat3 and quercetin, but also contributes to the optimization and design of such anti-cancer inhibitors.


Subject(s)
Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Quercetin , STAT3 Transcription Factor , Quercetin/pharmacology , Quercetin/chemistry , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Medicine, Chinese Traditional , Network Pharmacology
8.
Food Chem ; 456: 140007, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38861864

ABSTRACT

Developing an efficient method for screening Ochratoxin A (OTA) in agriculture products is vital to ensure food safety and human health. However, the complex food matrix seriously affects the sensitivity and accuracy. To address this issue, we designed a novel molecularly imprinted polymer (MIP) electrochemical sensor based on multiwalled carbon nanotube-modified niobium carbide (Nb2C-MWCNTs) with the aid of the density functional theory (DFT). In this design, a glassy carbon electrode (GCE) was first modified by Nb2C-MWCNTs heterostructure. Afterward, the MIP layer was prepared, with ortho-toluidine as a functional monomer selected via DFT and OTA acting as a template on the surface of Nb2C-MWCNTs/GCE using in-situ electropolymerization. Electrochemical tests and physical characterization revealed that Nb2C-MWCNTs improved the sensor's active surface area and electron transmission capacity. Nb2C-MWCNTs had a good synergistic effect on MIP, endowing the sensor with high sensitivity and specific recognition of OTA in complex food matrix systems. The MIP sensor showed a wide linear range from 0.04 to 10.0 µM with a limit of detection (LOD) of 3.6 nM. Moreover, it presented good repeatability and stability for its highly antifouling effect on OTA. In real sample analysis, the recoveries, ranging from 89.77% to 103.70%, agreed well with the results obtained by HPLC methods, suggesting the sensor has good accuracy and high potential in practical applications.


Subject(s)
Electrochemical Techniques , Food Contamination , Limit of Detection , Molecular Imprinting , Molecularly Imprinted Polymers , Nanotubes, Carbon , Ochratoxins , Ochratoxins/analysis , Ochratoxins/chemistry , Nanotubes, Carbon/chemistry , Electrochemical Techniques/instrumentation , Food Contamination/analysis , Molecularly Imprinted Polymers/chemistry , Electrodes
9.
Virology ; 598: 110196, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098183

ABSTRACT

Reovirus (Reo) has shown promising potential in specifically killing tumor cells, and offering new possibilities for ovarian cancer (OC) treatment. However, neutralizing antibodies in the ascites from OC patients greatly limit the further application of Reo. In this study, we employed cationic liposomes (Lipo) to deliver Reo, significantly enhancing its ability to enter OC cells and its effectiveness in killing these cells under ascitic conditions. Pre-treatment with the MßCD inhibitor notably decreased Reo-mediated tumor cell death, indicating that Lipo primarily enables Reo's cellular uptake through caveolin-mediated endocytosis. Our results demonstrate that Lipo effectively facilitates the entry of Reo into the cytoplasm and triggers cell apoptosis. The above findings provide a new strategy to overcome the obstacle of neutralizing antibodies in the clinical application of Reo.


Subject(s)
Antibodies, Neutralizing , Liposomes , Ovarian Neoplasms , Reoviridae , Female , Humans , Ovarian Neoplasms/immunology , Antibodies, Neutralizing/immunology , Reoviridae/immunology , Reoviridae/physiology , Cell Line, Tumor , Oncolytic Virotherapy/methods , Apoptosis , Animals , Cations , Oncolytic Viruses/immunology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL