Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nature ; 575(7781): 195-202, 2019 11.
Article in English | MEDLINE | ID: mdl-31666704

ABSTRACT

The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/cytology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Thalamus/anatomy & histology , Thalamus/cytology , Animals , Axons/physiology , Cerebral Cortex/physiology , Female , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Thalamus/physiology
2.
Nature ; 508(7495): 207-14, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695228

ABSTRACT

Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.


Subject(s)
Brain/anatomy & histology , Brain/cytology , Connectome , Animals , Atlases as Topic , Axons/physiology , Cerebral Cortex/cytology , Corpus Striatum/cytology , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Neuroanatomical Tract-Tracing Techniques , Thalamus/cytology
3.
Nat Neurosci ; 26(2): 350-364, 2023 02.
Article in English | MEDLINE | ID: mdl-36550293

ABSTRACT

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


Subject(s)
Connectome , Visual Cortex , Mice , Animals , Neurons/physiology , Brain/physiology , Visual Cortex/physiology , Visual Pathways
4.
Nat Commun ; 8: 15604, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569837

ABSTRACT

Single-cell characterization and perturbation of neurons provides knowledge critical to addressing fundamental neuroscience questions including the structure-function relationship and neuronal cell-type classification. Here we report a robot for efficiently performing in vivo single-cell experiments in deep brain tissues optically difficult to access. This robot automates blind (non-visually guided) single-cell electroporation (SCE) and extracellular electrophysiology, and can be used to characterize neuronal morphological and physiological properties of, and/or manipulate genetic/chemical contents via delivering extraneous materials (for example, genes) into single neurons in vivo. Tested in the mouse brain, our robot successfully reveals the full morphology of single-infragranular neurons recorded in multiple neocortical regions, as well as deep brain structures such as hippocampal CA3, with high efficiency. Our robot thus can greatly facilitate the study of in vivo full morphology and electrophysiology of single neurons in the brain.


Subject(s)
Brain/physiology , Neurons/physiology , Robotics/methods , Single-Cell Analysis/methods , Animals , Brain/cytology , Electrophysiological Phenomena/physiology , Electroporation/instrumentation , Electroporation/methods , Equipment Design , Female , Male , Mice , Mice, Inbred C57BL , Microelectrodes , Models, Animal , Robotics/instrumentation , Single-Cell Analysis/instrumentation , Software
5.
Cell Rep ; 18(8): 2058-2072, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228269

ABSTRACT

Understanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.


Subject(s)
Retina/physiology , Retinal Ganglion Cells/physiology , Visual Pathways/physiology , Animals , Integrases/metabolism , Mice , Mice, Transgenic , Retina/metabolism , Retinal Ganglion Cells/metabolism , Superior Colliculi/metabolism , Superior Colliculi/physiology
6.
J Comp Neurol ; 522(9): 1989-2012, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24639291

ABSTRACT

As an anterograde neuronal tracer, recombinant adeno-associated virus (AAV) has distinct advantages over the widely used biotinylated dextran amine (BDA). However, the sensitivity and selectivity of AAV remain uncharacterized for many brain regions and species. To validate this tracing method further, AAV (serotype 1) was systematically compared with BDA as an anterograde tracer by injecting both tracers into three cortical and 15 subcortical regions in C57BL/6J mice. Identical parameters were used for our sequential iontophoretic injections, producing injections of AAV that were more robust in size and in density of neurons infected compared with those of BDA. However, these differences did not preclude further comparison between the tracers, because the pairs of injections were suitably colocalized and contained some percentage of double-labeled neurons. A qualitative analysis of projection patterns showed that the two tracers behave very similarly when injection sites are well matched. Additionally, a quantitative analysis of relative projection intensity for cases targeting primary motor cortex (MOp), primary somatosensory cortex (SSp), and caudoputamen (CP) showed strong agreement in the ranked order of projection intensities between the two tracers. A detailed analysis of the projections of two brain regions (SSp and MOp) revealed many targets that have not previously been described in the mouse or rat. Minor retrograde labeling of neurons was observed in all cases examined, for both AAV and BDA. Our results show that AAV has actions equivalent to those of BDA as an anterograde tracer and is suitable for analysis of neural circuitry throughout the mouse brain.


Subject(s)
Biotin/analogs & derivatives , Brain/anatomy & histology , Dependovirus , Dextrans , Fluorescent Dyes , Neuroanatomical Tract-Tracing Techniques , Neuronal Tract-Tracers , Animals , Cell Count , Immunohistochemistry , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Fluorescence , Neural Pathways/anatomy & histology , Neurons/cytology , Photomicrography , Sensitivity and Specificity
7.
Article in English | MEDLINE | ID: mdl-25071457

ABSTRACT

Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute's Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.


Subject(s)
Brain/anatomy & histology , Gene Expression Regulation/physiology , Integrases/metabolism , Neurons/metabolism , Recombination, Genetic , Animals , Brain/metabolism , Gene Expression Regulation/drug effects , Integrases/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/classification , Tamoxifen/pharmacology , Trimethoprim/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL