ABSTRACT
With the fast development of the smart lifestyle in recent years, simple and flexible body condition monitoring has become more and more important. However, currently, commercially available motion-sensing devices always lack flexibility or at a high cost. This article has fully explored the merits of a commercial and easily available material of carbon fiber powder (CFP) and prepared CFP-based screen printing inks. This conductive ink can be directly and quickly printed onto a variety of different flexible common substrates, such as paper, cotton fabrics, etc., to prepare flexible sensors. At the same time, as a result of the good photothermal performance and conductivity of CFP, the printed flexible sensors have fast and stable performance on thermal and human motion detection. The use of CFP as the smart element to construct a wearable device will offer a choice for the intelligent industry.
ABSTRACT
OBJECTIVE: We aimed to assess the secular trends in cardiovascular health (CVH) among U.S. adults with different glycemic statuses based on the Life's Essential 8 (LE8). METHODS: This cross-sectional study used nationally representative data from 6 cycles of the National Health and Nutrition Examination Surveys between 2007 and 2018. Survey-weighted linear models were used to assess time trends in LE8 scores. Stratified analyses and sensitivity analyses were conducted to validate the stability of the results. RESULTS: A total of 23,616 participants were included in this study. From 2007 to 2018, there was no significant improvement in overall CVH and the proportion of ideal CVH among participants with diabetes and prediabetes. We observed an opposite trend between health behavior and health factors in the diabetes group, mainly in increasing physical activity scores and sleep scores (P for trend<0.001), and declining BMI scores [difference, -6.81 (95% CI, -12.82 to -0.80)] and blood glucose scores [difference, -6.41 (95% CI, -9.86 to -2.96)]. Dietary health remained at a consistently low level among participants with different glycemic status. The blood lipid scores in the prediabetes group improved but were still at a lower level than other groups. Education/income differences persist in the CVH of participants with diabetes or prediabetes, especially in health behavior factors. Sensitivity analyses of the absolute difference and change in proportion showed a consistent trend. CONCLUSIONS: Trends in CVH among participants with diabetes or prediabetes were suboptimal from 2007 to 2018, with persistent education/income disparities.
Subject(s)
Blood Glucose , Cardiovascular Diseases , Nutrition Surveys , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , United States/epidemiology , Cardiovascular Diseases/epidemiology , Adult , Blood Glucose/analysis , Health Behavior , Prediabetic State/epidemiology , Exercise , Diabetes Mellitus/epidemiology , AgedABSTRACT
INTRODUCTION AND OBJECTIVES: The increasing incidence of hepatocellular carcinoma (HCC) in China is an urgent issue, necessitating early diagnosis and treatment. This study aimed to develop personalized predictive models by combining machine learning (ML) technology with a demographic, medical history, and noninvasive biomarker data. These models can enhance the decision-making capabilities of physicians for HCC in hepatitis B virus (HBV)-related cirrhosis patients with low serum alpha-fetoprotein (AFP) levels. PATIENTS AND METHODS: A total of 6,980 patients treated between January 2012 and December 2018 were included. Pre-treatment laboratory tests and clinical data were obtained. The significant risk factors for HCC were identified, and the relative risk of each variable affecting its diagnosis was calculated using ML and univariate regression analysis. The data set was then randomly partitioned into validation (20 %) and training sets (80 %) to develop the ML models. RESULTS: Twelve independent risk factors for HCC were identified using Gaussian naïve Bayes, extreme gradient boosting (XGBoost), random forest, and least absolute shrinkage and selection operation regression models. Multivariate analysis revealed that male sex, age >60 years, alkaline phosphate >150 U/L, AFP >25 ng/mL, carcinoembryonic antigen >5 ng/mL, and fibrinogen >4 g/L were the risk factors, whereas hypertension, calcium <2.25 mmol/L, potassium ≤3.5 mmol/L, direct bilirubin >6.8 µmol/L, hemoglobin <110 g/L, and glutamic-pyruvic transaminase >40 U/L were the protective factors in HCC patients. Based on these factors, a nomogram was constructed, showing an area under the curve (AUC) of 0.746 (sensitivity = 0.710, specificity=0.646), which was significantly higher than AFP AUC of 0.658 (sensitivity = 0.462, specificity=0.766). Compared with several ML algorithms, the XGBoost model had an AUC of 0.832 (sensitivity = 0.745, specificity=0.766) and an independent validation AUC of 0.829 (sensitivity = 0.766, specificity = 0.737), making it the top-performing model in both sets. The external validation results have proven the accuracy of the XGBoost model. CONCLUSIONS: The proposed XGBoost demonstrated a promising ability for individualized prediction of HCC in HBV-related cirrhosis patients with low-level AFP.
Subject(s)
Carcinoma, Hepatocellular , Liver Cirrhosis , Liver Neoplasms , Machine Learning , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/etiology , Liver Neoplasms/blood , Liver Neoplasms/virology , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Liver Neoplasms/diagnosis , alpha-Fetoproteins/analysis , alpha-Fetoproteins/metabolism , Male , Female , Middle Aged , Liver Cirrhosis/blood , Liver Cirrhosis/virology , Liver Cirrhosis/diagnosis , Risk Assessment , Risk Factors , China/epidemiology , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/blood , Predictive Value of Tests , Adult , Nomograms , Biomarkers, Tumor/blood , Hepatitis B/complications , Hepatitis B/blood , Hepatitis B/diagnosis , Aged , Retrospective StudiesABSTRACT
Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.
Subject(s)
Benzoxazines/metabolism , Herbivory , Soil/chemistry , Spodoptera/growth & development , Zea mays/metabolism , Animals , Ecosystem , Homeostasis , Iron/metabolism , Larva/growth & development , Plant Leaves/metabolism , Plant Roots/metabolism , Zea mays/parasitologyABSTRACT
Landscapes evolution have significantly altered the Earth's energy balance and biogeochemical cycles, thereby exacerbating climate change. This, in turn, affects surface characteristics and the provision of ecosystem services, especially carbon storage. While recent centuries have witnessed unprecedented landscape changes, limited long-term studies have offered insights into the comparison between present-day features and historical conditions. This study utilized historical reconstruction data and remote sensing imagery to assess landscape evolution and its consequences for carbon stocks over 300 years. Employing multiple regression and random forest models were selected to quantify the influence of key landscape metrics on carbon stocks in the Dongting Lake basin, allowing for a thorough analysis across different sub-basins and land types. The results revealed that intensified human disturbances led to increased landscape fragmentation (+82%), regularity (+56%), and diversity (+37%) within the basin. Moreover, carbon stocks decreased from 4.13 Gt to 3.66 Gt, representing an 11.4% loss, with soil carbon stock experiencing the most considerable reduction (0.24 Gt, 51%). These changes in carbon stock metrics corresponded to shifts in landscape patterns, both undergoing significant transitions at the turn of the 21st century. Meanwhile, fragmentation and regularity played a vital role in explaining carbon stock changes, as their increase contributes to greater carbon losses. Likewise, an increase in landscape diversity correlated with decreased carbon stocks, challenging the prevailing notion that enhanced diversity promotes carbon stocks. The influence of landscape patterns on carbon stocks varies notably across distinct land types. An increase in the dominance of farmland and built-up land led to decreased carbon stocks, while the opposite holds true for forestland. Similarly, a decrease in regularity for farmland, forestland, and built-up land benefits carbon storage, while grassland demonstrates the opposite trend. These findings offer insights for countries and regions in the early stages of development or approaching development, suggesting improvements in land use practices and strategies to address climate change. This involves offsetting land-based carbon emissions through changes in landscape spatial configuration.
Subject(s)
Carbon , Climate Change , Ecosystem , Carbon/analysis , Soil/chemistry , Conservation of Natural Resources , Lakes/chemistry , Carbon SequestrationABSTRACT
OBJECTIVE: To explore the expression of miR-31 and Satb2 gene in the serum of postmenopausal women with osteoporosis (OP). METHODS: 97 postmenopausal women with OP and 100 healthy women were selected as research subjects. MSCs were purchased from Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated, identified and transfected, and then quantified by alkaline phosphatase (ALP) levels. The expression levels of miR-31 and Satb2 gene mRNA were determined by qRT-PCR. The proteins of RUNX2, OCN and BMP and Wnt/ß-catenin pathway-related proteins (GSK-3, Frizzled 1, Lrp5, Lrp6 and ß-catenin) were tested by Western blotting. RESULTS: In the OP group, the relative expression of miR-31 was 3.61±0.54, significantly higher than that (1.75±0.27) in the healthy control group (t=9.422, P<0.001). The relative expression of mRNA of Satb2 gene was 0.86±0.12, significantly lower than that (1.35±0.21) in the healthy control group (t=5.897, P<0.001). CONCLUSIONS: The increase in miR-31 expression can down-regulate the Wnt/ß-catenin pathway by targeting the expression of Satb2 gene, thereby inhibiting the osteogenic differentiation of BMSCs. This provides an important reference for further understanding the mechanism of OP and identifying targets for early diagnosis and treatment.
Subject(s)
MicroRNAs , beta Catenin , Humans , Female , Wnt Signaling Pathway/genetics , Bone Marrow , Glycogen Synthase Kinase 3 , Osteogenesis/genetics , China , Cell Differentiation , MicroRNAs/geneticsABSTRACT
We develop a route to prepare two types of cellulose nanocrystals (CNCs, CNC1 and CNC2) from a unique biomass resource, the fruit shell of Camellia oleifera Abel (SCOA), by integrating sulfuric acid hydrolysis and high-pressure homogenization and examine the effects of hydrolysis time on characteristics of the CNCs during the process. The CNCs exhibit different evolutions in size, morphology, surface charge, and crystallinity with increasing hydrolysis time. While both the CNCs have high crystallinity, CNC1 is of rod-like character with a relatively low aspect ratio, and CNC2 exhibits a hairy appearance with a high aspect ratio. We highlight that controlled acid hydrolysis contributes to the formation of weak spots with an increased susceptibility for homogenizing cellulosic solid residues into hairy CNCs. This is a good step toward tailoring CNC properties in a conventional and scalable approach to maximize their potential applications.
Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Hydrolysis , Nanoparticles/chemistryABSTRACT
OBJECTIVES: a) To explore the expression of Foxf1 and NF-κB in bone tissue of ovariectomized rats with osteoporosis and b) to investigate the role and mechanism of NF-κB pathway regulated by Foxf1 gene in the differentiation and formation of rat osteoclasts and osteoblasts with cell experiments. METHODS: Ovariectomized rat model of osteoporosis was established with 3-month-old female SD rats. The rats were divided into sham group (n=10) and osteoporosis group (n=10). Real time fluorescent quantitative PCR and Western blot were used to detect the expression levels of Foxf1 and NF-κB genes and proteins in the femur tissues of rats and analyze their correlation. RESULTS: Both Foxf1 and NF- κB were highly expressed in the femur tissues. Upon the overexpression of Foxf1 gene in osteoblasts and osteoclasts in vitro, the gene and protein expression of NF-κB were also upregulated, significantly reducing the gene and protein expression levels of osteogenic factors, including ATF4, OCN, ALP and Runx2. CONCLUSIONS: Foxf1 gene could inhibit osteoblast formation and promote osteoclast differentiation by NF-κB pathway, which may increase the risk of osteoporosis in rats.
Subject(s)
Forkhead Transcription Factors , NF-kappa B , Osteoporosis , Animals , Female , Forkhead Transcription Factors/genetics , NF-kappa B/genetics , Osteoblasts/cytology , Osteoclasts/cytology , Osteoporosis/genetics , Osteoporosis/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Up-RegulationABSTRACT
OBJECTIVE: To explore the regulation of LncRNA TUG /miRNA-204/SIRT1 pathway on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), so as to provide a new theoretical basis for the clinical treatment of osteoporosis. METHODS: Detect changes of LncRNA and miRNA expression predicted in post-differentiation BMSCs with Western blot and qPCR tests. Verify the regulatory relationship between LncRNA and miRNA, miRNA and SIRT1 through the luciferase reporter assay. Transfect recombinant plasmids with LncRNA and their shRNA or transfected miRNA mimics and inhibitors. RESULTS: According to the bioinformatic prediction, LncRNA TUG/miR-204 affected the regulation of SIRT1 on osteogenic differentiation of BMSCs, which were consistent with the results of luciferase reporter assay, namely, there are direct regulation targets between LncRNA TUG and miR-204, miR-204 and SIRT1. Overexpression and knockdown experiments revealed that LncRNA TUG overexpression/knockdown down/up-regulated miR-204 expression, which otherwise increased/decreased SIRT1 levels, and was positively correlated with osteogenic differentiation of BMSCs. Conversely, miR-204 was negatively correlated with LncRNA TUG and SIRT1, and negatively regulated osteogenic differentiation. CONCLUSION: This study found the direct regulatory relationship of LncRNA TUG/miR-204/SIRT1 during the osteogenic differentiation of BMSCs, and revealed that SIRT1 positively regulates the osteogenic differentiation of BMSCs, which provides a theoretical basis and potential therapeutic targets for a series of osteogenic differentiation-related diseases including osteoporosis.
Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , RNA, Long Noncoding , Cell Differentiation/genetics , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolismABSTRACT
Chemotherapy is a common method for tumor treatment. However, the non-specific distribution of chemotherapeutic drugs causes the death of normal cells. Nanocarriers, particularly mesoporous carriers, can be modified to achieve targeted and controlled drug release. In this study, mesoporous polydopamine (MPDA) was used as a carrier for the antitumor drug doxorubicin (DOX). To enhance the release efficiency of DOX in the tumor microenvironment, which contains high concentrations of glutathione (GSH), we used N,N-bis(acryloyl)cysteamine as a cross-linking agent to encapsulate the surface of MPDA with fucoidan (FU), producing MPDA-DOX@FU-SS. MPDA-DOX@FU-SS was characterized via transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS), and its antitumor efficacy in vitro was investigated. The optimal conditions for the preparation of MPDA were identified as pH 12 and 20 °C, and the optimal MPDA-to-FU ratio was 2:1. The DOX release rate reached 47.77% in an in vitro solution containing 10 mM GSH at pH 5.2. When combined with photothermal therapy, MPDA-DOX@FU-SS significantly inhibited the growth of HCT-116 cells. In conclusion, MPDA-DOX@FU-SS may serve as a novel, highly effective tumor suppressor that can achieve targeted drug release in the tumor microenvironment.
Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Doxorubicin , Nanoparticles/chemistry , Drug Liberation , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Tumor MicroenvironmentABSTRACT
The dysregulation of circular RNA (circRNA) has been monitored in osteoarthritis (OA) cartilage, hinting that circRNA deregulation modulates OA progression. We thus aimed to unveil the role of circRNA spastic paraplegia 11 (circ_SPG11) in OA conditions. The upregulation of circ_SPG11 was observed in OA cartilage and IL-1ß-treated chondrocytes. Knockdown of circ_SPG11 restored IL-1ß-depleted cell proliferation and alleviated IL-1ß-induced cell apoptosis and ECM degradation. Circ_SPG11 bound to miR-665 and negatively regulated miR-665 expression. Inhibition of miR-665 reversed the inhibitory effect on IL-1ß-induced chondrocyte injury caused by circ_SPG11 knockdown. GREM1 was a target of miR-665, and circ_SPG11 knockdown depleted GREM1 expression by enriching miR-665. Overexpression of GREM1 also reversed the inhibitory effect on IL-1ß-induced chondrocyte injury caused by miR-665 enrichment. Circ_SPG11 might promote IL-1ß-induced chondrocyte apoptosis and ECM degradation via increasing GREM1 expression by decoying miR-665.
Subject(s)
Chondrocytes/pathology , Intercellular Signaling Peptides and Proteins/biosynthesis , MicroRNAs/metabolism , Osteoarthritis/pathology , Proteins/metabolism , RNA, Circular/metabolism , Apoptosis/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Gene Expression Regulation/physiology , Humans , Interleukin-1beta/metabolism , Osteoarthritis/genetics , Up-RegulationABSTRACT
Despite research into the response of ammonia (NH3 ) volatilization in farmland to various meteorological factors, the potential impact of future climate change on NH3 volatilization is not fully understood. Based on a database consisting of 1063 observations across China, nonlinear NH3 models considering crop type, meteorological, soil and management variables were established via four machine learning methods, including support vector machine, multi-layer perceptron, gradient boosting machine and random forest (RF). The RF model had the highest R2 of 0.76 and the lowest RMSE of 0.82 kg NH3 -N ha-1 , showing the best simulation capability. Results of model importance indicated that NH3 volatilization was mainly controlled by total input of N fertilizer, followed by meteorological factors, human managements and soil characteristics. The NH3 emissions of China's cereal production (paddy rice, wheat and maize) in 2018 was estimated to be 3.3 Mt NH3 -N. By 2050, NH3 volatilization will increase by 23.1-32.0% under different climate change scenarios (Representative Concentration Pathways, RCPs), and climate change will have the greatest impact on NH3 volatilization in the Yangtze river agro-region of China due to high warming effects. However, the potential increase in NH3 volatilization under future climate change can be mitigated by 26.1-47.5% through various N fertilizer management optimization options.
Subject(s)
Ammonia , Fertilizers , Agriculture , Ammonia/analysis , China , Climate Change , Crops, Agricultural , Fertilizers/analysis , Humans , Nitrogen/analysisABSTRACT
Structures that are highly ordered in nature show unique light propagation abilities. Among them, micro-honeycomb arrays are attractive owing to their advantages relating to the collection of light or enlarging the viewing angle and, also, owing to their potential applications in precision optics. Inspired by the natural phenomenon of droplet condensation on a cold surface, breath figure self-assembly has been a common approach used to fabricate such ordered micro-honeycomb arrays. However, the harsh preparation conditions and specific polymer architecture required have limited the widespread application of this approach. In this work, by using a commercial linear homopolymer and introducing its nonsolvent, we successfully fabricated uniform micro-honeycomb arrays on a large scale in just seconds and at ambient humidity. The morphology of the structures can be easily tuned via controlling the preparation conditions. Furthermore, high fill-factor convex micro-lenses were prepared based on the as-prepared concave micro-honeycomb arrays as templates through a simple replication process. They demonstrate properties such as clear multiple image presentation and light diffraction. They can also assist the strong scattering of light, which enhances the fluorescent intensity by more than 10%. This method is envisaged as a potential candidate to replace breath figure self-assembly for micro-honeycomb arrays in a low-cost and high-efficiency manner under mild conditions.
ABSTRACT
OBJECTIVES: To investigate the effects of bone morphogenetic protein-2 (BMP-2) compound with fibrin on osteoporotic vertebral fracture healing in rats. METHODS: For the present study 160 Specific-Pathogen Free 32-week-old female Sprague-Dawley rats were used. 120 rats were randomly divided in three groups (experimental, model and sham operation group- n=40 per group) and were ovariectomized to establish the osteoporosis model. 40 rats served as a control group without treatment. The expression of BMP-2 in the fracture zone at the 4th, 6th, 8th, and 12th weeks was detected by qRT-PCR. The expression of BALP and CTX-I in serum at the 12th week was detected by Elisa. RESULTS: At week 8, the morphology of the sham operation group was the same and the fracture healing occurred more slowly than in the other groups. At week 12, the expression of BMP-2 in the model group was significantly higher than that in the other three groups (p<0.05). At week 12, the maximum load, maximum strain, and elastic modulus of model group were significantly lower than those of the other three groups. CONCLUSIONS: BMP-2 compound with fibrin can enhance the timing and quality of bone fracture healing in rats.
Subject(s)
Bone Morphogenetic Protein 2/administration & dosage , Fibrin/administration & dosage , Fracture Healing/drug effects , Osteoporotic Fractures/drug therapy , Osteoporotic Fractures/metabolism , Animals , Bone Morphogenetic Protein 2/biosynthesis , Drug Therapy, Combination , Female , Fracture Healing/physiology , Ovariectomy/adverse effects , Rats , Rats, Sprague-DawleyABSTRACT
Accurate understanding of the relationship between urban land morphology and the concentration of PM2.5 is essential for achieving high-quality development of urban agglomerations. Based on a mechanism framework of "Internal-External driving force", 19 Chinese urban agglomerations at different development levels were analysed using the geographically weighted regression model to evaluate the impacts of urban land morphology on PM2.5 concentrations in years 2000-2017. The results show: (1) The PM2.5 average concentrations of all 19 urban agglomerations continue to increase from 30 µg/m3 in 2000 to 52 µg/m3 in 2007 but decreased to 34 µg/m3 in 2017. The changes in PM2.5 concentrations vary for urban agglomerations at different development levels. Spatial differences in PM2.5 concentrations are significant, forming a pattern that decreases from the centre to the periphery regions; (2) The urban land morphology of the entire urban agglomeration areas has undergone significant changes. The fractal dimension index (from 4.150 to 2.731) and the compactness (from 0.647 to 0.635) showed a downward trend, while the shape indices (from 1.421 to 1.606) demonstrated an increasing trend. National-level urban agglomerations are more compact and more complex in shape, while more fragmented are regional and local urban agglomerations; (3) Different parameters of urban land morphology have varying effects on PM2.5 concentration varies and at different development levels of urban agglomerations. The combination of urban land morphology, socio-economic factors, and natural elements has a complex effect on PM2.5 concentrations. It can contribute to understanding the linkage between urban land morphology and PM2.5, providing references for future studies.
Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring , Forecasting , Particulate Matter/analysisABSTRACT
Mindin is important in broad spectrum of immune responses. On the other hand, we previously reported that mindin attenuated human colon cancer development by blocking angiogenesis through Egr-1-mediated regulation. However, the mice original mindin directly suppressed the syngenic colorectal cancer (CRC) growth in our recent study and we aimed to further define the role of mindin during CRC development in mice. We established the mouse syngeneic CRC CMT93 and CT26 WT cell lines with stable mindin knock-down or overexpression. These cells were also subcutaneously injected into C57BL/6 and BALB/c mice as well as established a colitis-associated colorectal cancer (CAC) mouse model treated with lentiviral-based overexpression and knocked-down of mindin. Furthermore, we generated mindin knockout mice using a CRISPR-Cas9 system with CAC model. Our data showed that overexpression of mindin suppressed cell proliferation in both of CMT93 and CT26 WT colon cancer cell lines, while the silencing of mindin promoted in vitro cell proliferation via the ERK and c-Fos pathways and cell cycle control. Moreover, the overexpression of mindin significantly suppressed in vivo tumour growth in both the subcutaneous transplantation and the AOM/DSS-induced CAC models. Consistently, the silencing of mindin reversed these in vivo observations. Expectedly, the tumour growth was promoted in the CAC model on mindin-deficient mice. Thus, mindin plays a direct tumour suppressive function during colon cancer progression and suggesting that mindin might be exploited as a therapeutic target for CRC.
Subject(s)
Colonic Neoplasms/genetics , Extracellular Matrix Proteins/genetics , Genes, Tumor Suppressor/physiology , MAP Kinase Signaling System/genetics , Signal Transduction/genetics , Animals , Cell Cycle/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Colitis/genetics , Colitis/pathology , Colon/pathology , Colonic Neoplasms/pathology , Disease Models, Animal , Disease Progression , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RAW 264.7 CellsABSTRACT
Photonic crystals coated on the surface of scintillators can be used to improve the light extraction efficiency by partially eliminating the total internal reflection. However, the traditional self-assembly technique is not applicable to the hygroscopic scintillators. In the present investigation, we have proposed an efficient method to prepare the photonic crystals on the surface of CsI(Na) hygroscopic scintillators by a combination of the self-assemble of polystyrene (PS) microspheres and the subsequent dry-transfer procedure. For obtaining optimal parameters of photonic crystals, the light output of the CsI(Na) sample is enhanced by 43.2% compared to the reference sample without photonic crystals under the excitation of alpha particles from 241Am source. The energy resolution is improved from 11.2% to 7.8%. This technique based on the dry-transfer procedure has a promising prospect in the preparation of photonic crystals for hygroscopic scintillators.
ABSTRACT
Conductive microwrinkles present a superior performance in ultrasensitive sensing, smart controlling, as well as energy conservation because of their unique structures. These wrinkles are usually prepared by the deposition of a thin conductive stiff layer on a soft substrate under a certain strain. However, traditional conductive materials may encounter some deficiencies, such as fragility or poor dispersity, in any solvent. To promote the applicability of conductive microwrinkles, here, we adopt a new two-dimensional nanomaterial Ti3C2Tx MXene as the conductive stiff layer to construct the microwrinkles. By combining the spraying and inflating techniques, the hierarchical complex and delicate Ti3C2Tx-polyurethane (Ti3C2Tx-PU) microwrinkles have become facilely available. The characteristic wavelength and amplitude of the microwrinkles could be easily adjusted by altering the inflating height of the PU film or the spraying volume of the Ti3C2Tx solution. Because the as-prepared Ti3C2Tx wrinkles could sensitively generate deformation inducing a resistance change under a force, these structures are also assembled to detect the applied force. The Ti3C2Tx force sensors showed quick response to a tiny force and stable reliability over hundreds of cycles, which hold a promising potential to monitor or employ the microforce.
ABSTRACT
Recently, organic-inorganic hybrid perovskites (OIHPs) are rising as promising candidates for light-emitting applications, due to their superior optical properties. High performance light-emitting applications such as scintillators require minimum non-radiative recombination and high fractions of radiative recombination. Here, we report a simple solution-processing strategy for the synthesis of funnel-type CH3NH3(MA)PbCl3/CH3NH3(MA)PbBrxCl3-x heterostructure perovskite materials that improve the light emission performances. The single crystal X-ray diffraction pattern indicates that the lattice mismatch is only â¼3.24% in the heterointerface. The halide gradient is helpful for driving the photoexcited carriers from the internal high bandgap material to the low bandgap light-emitter layer. The steady-state photoluminescence (PL) and radioluminescence (RL) spectra show that the luminescence intensity has been significantly improved by this heterostructure perovskite. Time-resolved photoluminescence (TRPL) exhibits carrier transport along the halide gradient. Our research suggests that the gradient halide perovskite heterostructure with specific optical properties could be a prospect for commercial scintillator applications.
ABSTRACT
OBJECTIVE: To investigate the clinical effects of dynamic hip screw (DHS) and proximal femoral nail anti-rotation (PFNA) on senile osteoporosis patients and their effects on the expression level of bone-specific alkaline phosphatase (BALP). METHODS: 116 elderly patients with osteoporotic fracture were divided into DHS group (n=67) and PFNA group (n=49). BALP values were measured by ELISA before operation and 30 days after operation. RESULTS: The operation time, the bleeding volume, and the weight-bearing time of PFNA group was shorter than DHS group (p<0.05); the dominant blood loss and occult blood loss in PFNA group were less than those in DHS group (p<0.05); the healing time and detumescence time, the complications of PFNA group was fewer than the DHS group (p<0.05). The ten-meter walking speed and the five sitting tests in PFNA group were shorter than that in DHS group (p<0.05); the excellent and good rate and Harris score in PFNA group were higher than those in DHS group (p<0.05). The expression of BALP in PFNA group was lower than that in DHS group (p<0.05). CONCLUSION: PFNA surgery has less trauma, fewer complications, more optimistic postoperative healing and recovery degree, and is more conducive to the reduction of BALP expression level.