Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35066588

ABSTRACT

Multiple transcriptomic predictors of tumour cell radiosensitivity (RS) have been proposed, but they have not been benchmarked against one another or to control models. To address this, we present RadSigBench, a comprehensive benchmarking framework for RS signatures. The approach compares candidate models to those developed from randomly resampled control signatures and from cellular processes integral to the radiation response. Robust evaluation of signature accuracy, both overall and for individual tissues, is performed. The NCI60 and Cancer Cell Line Encyclopaedia datasets are integrated into our workflow. Prediction of two measures of RS is assessed: survival fraction after 2 Gy and mean inactivation dose. We apply the RadSigBench framework to seven prominent published signatures of radiation sensitivity and test for equivalence to control signatures. The mean out-of-sample R2 for the published models on test data was very poor at 0.01 (range: -0.05 to 0.09) for Cancer Cell Line Encyclopedia and 0.00 (range: -0.19 to 0.19) in the NCI60 data. The accuracy of both published and cellular process signatures investigated was equivalent to the resampled controls, suggesting that these signatures contain limited radiation-specific information. Enhanced modelling strategies are needed for effective prediction of intrinsic RS to inform clinical treatment regimes. We make recommendations for methodological improvements, for example the inclusion of perturbation data, multiomics, advanced machine learning and mechanistic modelling. Our validation framework provides for robust performance assessment of ongoing developments in intrinsic RS prediction.


Subject(s)
Benchmarking , Neoplasms , Genomics , Humans , Neoplasms/genetics , Neoplasms/radiotherapy , Radiation Tolerance/genetics , Transcriptome
2.
Nucleic Acids Res ; 49(W1): W613-W618, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33997893

ABSTRACT

Achilles' heel relationships arise when the status of one gene exposes a cell's vulnerability to perturbation of a second gene, such as chemical inhibition, providing therapeutic opportunities for precision oncology. SynLeGG (www.overton-lab.uk/synlegg) identifies and visualizes mutually exclusive loss signatures in 'omics data to enable discovery of genetic dependency relationships (GDRs) across 783 cancer cell lines and 30 tissues. While there is significant focus on genetic approaches, transcriptome data has advantages for investigation of GDRs and remains relatively underexplored. SynLeGG depends upon the MultiSEp algorithm for unsupervised assignment of cell lines into gene expression clusters, which provide the basis for analysis of CRISPR scores and mutational status in order to propose candidate GDRs. Benchmarking against SynLethDB demonstrates favourable performance for MultiSEp against competing approaches, finding significantly higher area under the Receiver Operator Characteristic curve and between 2.8-fold to 8.5-fold greater coverage. In addition to pan-cancer analysis, SynLeGG offers investigation of tissue-specific GDRs and recovers established relationships, including synthetic lethality for SMARCA2 with SMARCA4. Proteomics, Gene Ontology, protein-protein interactions and paralogue information are provided to assist interpretation and candidate drug target prioritization. SynLeGG predictions are significantly enriched in dependencies validated by a recently published CRISPR screen.


Subject(s)
Genes, Neoplasm , Neoplasms/genetics , Software , Synthetic Lethal Mutations , CRISPR-Cas Systems , Cell Line, Tumor , Gene Expression , Gene Expression Profiling , Humans , Mutation , Proteomics
3.
Mol Cell Proteomics ; 16(6): 1138-1150, 2017 06.
Article in English | MEDLINE | ID: mdl-28336725

ABSTRACT

Esophageal cancer is the eighth most common cancer worldwide and the majority of patients have systemic disease at presentation. Esophageal adenocarcinoma (OAC), the predominant subtype in western countries, is largely resistant to current chemotherapy regimens. Selective markers are needed to enhance clinical staging and to allow targeted therapies yet there are minimal proteomic data on this cancer type. After histological review, lysates from OAC and matched normal esophageal and gastric samples from seven patients were subjected to LC MS/MS after tandem mass tag labeling and OFFGEL fractionation. Patient matched samples of OAC, normal esophagus, normal stomach, lymph node metastases and uninvolved lymph nodes were used from an additional 115 patients for verification of expression by immunohistochemistry (IHC).Over six thousand proteins were identified and quantified across samples. Quantitative reproducibility was excellent between technical replicates and a moderate correlation was seen across samples with the same histology. The quantitative accuracy was verified across the dynamic range for seven proteins by immunohistochemistry (IHC) on the originating tissues. Multiple novel tumor-specific candidates are proposed and EPCAM was verified by IHC.This shotgun proteomic study of OAC used a comparative quantitative approach to reveal proteins highly expressed in specific tissue types. Novel tumor-specific proteins are proposed and EPCAM was demonstrated to be specifically overexpressed in primary tumors and lymph node metastases compared with surrounding normal tissues. This candidate and others proposed in this study could be developed as tumor-specific targets for novel clinical staging and therapeutic approaches.


Subject(s)
Adenocarcinoma/metabolism , Esophageal Neoplasms/metabolism , Neoplasm Proteins/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Female , Humans , Male , Middle Aged , Proteomics/methods
4.
BMC Med ; 15(1): 118, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28648142

ABSTRACT

BACKGROUND: Metastatic clear cell renal cell cancer (mccRCC) portends a poor prognosis and urgently requires better clinical tools for prognostication as well as for prediction of response to treatment. Considerable investment in molecular risk stratification has sought to overcome the performance ceiling encountered by methods restricted to traditional clinical parameters. However, replication of results has proven challenging, and intratumoural heterogeneity (ITH) may confound attempts at tissue-based stratification. METHODS: We investigated the influence of confounding ITH on the performance of a novel molecular prognostic model, enabled by pathologist-guided multiregion sampling (n = 183) of geographically separated mccRCC cohorts from the SuMR trial (development, n = 22) and the SCOTRRCC study (validation, n = 22). Tumour protein levels quantified by reverse phase protein array (RPPA) were investigated alongside clinical variables. Regularised wrapper selection identified features for Cox multivariate analysis with overall survival as the primary endpoint. RESULTS: The optimal subset of variables in the final stratification model consisted of N-cadherin, EPCAM, Age, mTOR (NEAT). Risk groups from NEAT had a markedly different prognosis in the validation cohort (log-rank p = 7.62 × 10-7; hazard ratio (HR) 37.9, 95% confidence interval 4.1-353.8) and 2-year survival rates (accuracy = 82%, Matthews correlation coefficient = 0.62). Comparisons with established clinico-pathological scores suggest favourable performance for NEAT (Net reclassification improvement 7.1% vs International Metastatic Database Consortium score, 25.4% vs Memorial Sloan Kettering Cancer Center score). Limitations include the relatively small cohorts and associated wide confidence intervals on predictive performance. Our multiregion sampling approach enabled investigation of NEAT validation when limiting the number of samples analysed per tumour, which significantly degraded performance. Indeed, sample selection could change risk group assignment for 64% of patients, and prognostication with one sample per patient performed only slightly better than random expectation (median logHR = 0.109). Low grade tissue was associated with 3.5-fold greater variation in predicted risk than high grade (p = 0.044). CONCLUSIONS: This case study in mccRCC quantitatively demonstrates the critical importance of tumour sampling for the success of molecular biomarker studies research where ITH is a factor. The NEAT model shows promise for mccRCC prognostication and warrants follow-up in larger cohorts. Our work evidences actionable parameters to guide sample collection (tumour coverage, size, grade) to inform the development of reproducible molecular risk stratification methods.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Genetic Heterogeneity , Kidney Neoplasms/genetics , Adult , Aged , Carcinoma, Renal Cell/physiopathology , Cohort Studies , Female , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/physiopathology , Male , Middle Aged , Neoplasm Proteins , Prognosis , Proportional Hazards Models , Protein Array Analysis , Survival Rate
5.
Ecol Appl ; 26(4): 1003-17, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27509744

ABSTRACT

Adaptation services are the ecosystem processes and services that benefit people by increasing their ability to adapt to change. Benefits may accrue from existing but newly used services where ecosystems persist or from novel services supplied following ecosystem transformation. Ecosystem properties that enable persistence or transformation are important adaptation services because they support future options. The adaptation services approach can be applied to decisions on trade-offs between currently valued services and benefits from maintaining future options. For example, ecosystem functions and services of floodplains depend on river flows. In those regions of the world where climate change projections are for hotter, drier conditions, floods will be less frequent and floodplains will either persist, though with modified structure and function, or transform to terrestrial (flood-independent) ecosystems. Many currently valued ecosystem services will reduce in supply or become unavailable, but new options are provided by adaptation services. We present a case study from the Murray-Darling Basin, Australia, for operationalizing the adaptation services concept for floodplains and wetlands. We found large changes in flow and flood regimes are likely under a scenario of +1.6°C by 2030, even with additional water restored to rivers under the proposed Murray-Darling Basin Plan. We predict major changes to floodplain ecosystems, including contraction of riparian forests and woodlands and expansion of terrestrial, drought-tolerant vegetation communities. Examples of adaptation services under this scenario include substitution of irrigated agriculture with dryland cropping and floodplain grazing; mitigation of damage from rarer, extreme floods; and increased tourism, recreational, and cultural values derived from fewer, smaller wetlands that can be maintained with environmental flows. Management for adaptation services will require decisions on where intervention can enable ecosystem persistence and where transformation is inevitable. New ways of managing water that include consideration of the increasing importance of adaptation services requires major changes to decision-making that better account for landscape heterogeneity and large-scale change rather than attempting to maintain ecosystems in fixed states.


Subject(s)
Climate Change , Conservation of Natural Resources , Water Movements , Wetlands , Australia , Rivers
6.
Nucleic Acids Res ; 42(2): 1139-51, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24137011

ABSTRACT

RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar(5G1) null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar(5G1) mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar(5G1) null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability.


Subject(s)
Adenosine Deaminase/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Motor Neurons/enzymology , Action Potentials , Adenosine Deaminase/genetics , Animals , Chromosomes, Insect , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Genes, Lethal , Genotype , Larva/enzymology , Motor Neurons/physiology , Phenotype , RNA Editing , Receptors, GABA-A/genetics , Signal Transduction , gamma-Aminobutyric Acid/metabolism
7.
Nucleic Acids Res ; 41(Web Server issue): W562-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23761446

ABSTRACT

Tissue microarrays (TMAs) allow multiplexed analysis of tissue samples and are frequently used to estimate biomarker protein expression in tumour biopsies. TMA Navigator (www.tmanavigator.org) is an open access web application for analysis of TMA data and related information, accommodating categorical, semi-continuous and continuous expression scores. Non-biological variation, or batch effects, can hinder data analysis and may be mitigated using the ComBat algorithm, which is incorporated with enhancements for automated application to TMA data. Unsupervised grouping of samples (patients) is provided according to Gaussian mixture modelling of marker scores, with cardinality selected by Bayesian information criterion regularization. Kaplan-Meier survival analysis is available, including comparison of groups identified by mixture modelling using the Mantel-Cox log-rank test. TMA Navigator also supports network inference approaches useful for TMA datasets, which often constitute comparatively few markers. Tissue and cell-type specific networks derived from TMA expression data offer insights into the molecular logic underlying pathophenotypes, towards more effective and personalized medicine. Output is interactive, and results may be exported for use with external programs. Private anonymous access is available, and user accounts may be generated for easier data management.


Subject(s)
Neoplasms/mortality , Software , Tissue Array Analysis/methods , Biomarkers, Tumor/analysis , Breast Neoplasms/mortality , Female , Humans , Internet , Survival Analysis
8.
Cells ; 12(10)2023 05 11.
Article in English | MEDLINE | ID: mdl-37408201

ABSTRACT

The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.


Subject(s)
Hypothermia , Torpor , Animals , Zebrafish/genetics , Torpor/physiology , Gene Expression Profiling , Muscles
9.
Cancers (Basel) ; 15(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37444614

ABSTRACT

Transcriptomic personalisation of radiation therapy has gained considerable interest in recent years. However, independent model testing on in vitro data has shown poor performance. In this work, we assess the reproducibility in clinical applications of radiosensitivity signatures. Agreement between radiosensitivity predictions from published signatures using different microarray normalization methods was assessed. Control signatures developed from resampled in vitro data were benchmarked in clinical cohorts. Survival analysis was performed using each gene in the clinical transcriptomic data, and gene set enrichment analysis was used to determine pathways related to model performance in predicting survival and recurrence. The normalisation approach impacted calculated radiosensitivity index (RSI) values. Indeed, the limits of agreement exceeded 20% with different normalisation approaches. No published signature significantly improved on the resampled controls for prediction of clinical outcomes. Functional annotation of gene models suggested that many overlapping biological processes are associated with cancer outcomes in RT treated and non-RT treated patients, including proliferation and immune responses. In summary, different normalisation methods should not be used interchangeably. The utility of published signatures remains unclear given the large proportion of genes relating to cancer outcome. Biological processes influencing outcome overlapped for patients treated with or without radiation suggest that existing signatures may lack specificity.

10.
Sci Rep ; 13(1): 918, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650199

ABSTRACT

Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.


Subject(s)
Hibernation , Radiation Exposure , Torpor , Animals , Mice , Zebrafish/genetics , Liver , Hibernation/physiology , Torpor/physiology
11.
J Proteome Res ; 11(11): 5221-34, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23025403

ABSTRACT

Proteogenomics has the potential to advance genome annotation through high quality peptide identifications derived from mass spectrometry experiments, which demonstrate a given gene or isoform is expressed and translated at the protein level. This can advance our understanding of genome function, discovering novel genes and gene structure that have not yet been identified or validated. Because of the high-throughput shotgun nature of most proteomics experiments, it is essential to carefully control for false positives and prevent any potential misannotation. A number of statistical procedures to deal with this are in wide use in proteomics, calculating false discovery rate (FDR) and posterior error probability (PEP) values for groups and individual peptide spectrum matches (PSMs). These methods control for multiple testing and exploit decoy databases to estimate statistical significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five "incorrect" targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling for false positives.


Subject(s)
Databases, Protein , Genomics , Nucleotides/chemistry , Proteomics , Base Sequence , Expressed Sequence Tags , Mass Spectrometry , Probability
12.
Methods ; 55(1): 3-11, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21906678

ABSTRACT

Selection of protein targets for study is central to structural biology and may be influenced by numerous factors. A key aim is to maximise returns for effort invested by identifying proteins with the balance of biophysical properties that are conducive to success at all stages (e.g. solubility, crystallisation) in the route towards a high resolution structural model. Selected targets can be optimised through construct design (e.g. to minimise protein disorder), switching to a homologous protein, and selection of experimental methodology (e.g. choice of expression system) to prime for efficient progress through the structural proteomics pipeline. Here we discuss computational techniques in target selection and optimisation, with more detailed focus on tools developed within the Scottish Structural Proteomics Facility (SSPF); namely XANNpred, ParCrys, OB-Score (target selection) and TarO (target optimisation). TarO runs a large number of algorithms, searching for homologues and annotating the pool of possible alternative targets. This pool of putative homologues is presented in a ranked, tabulated format and results are also visualised as an automatically generated and annotated multiple sequence alignment. The target selection algorithms each predict the propensity of a selected protein target to progress through the experimental stages leading to diffracting crystals. This single predictor approach has advantages for target selection, when compared with an approach using two or more predictors that each predict for success at a single experimental stage. The tools described here helped SSPF achieve a high (21%) success rate in progressing cloned targets to diffraction-quality crystals.


Subject(s)
Computational Biology/methods , Crystallization/methods , Proteins , Algorithms , Amino Acid Sequence , Computer Simulation , Databases, Protein , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Proteins/analysis , Proteins/chemistry , Proteins/genetics , Sequence Alignment , Software
13.
J Pers Med ; 12(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35743743

ABSTRACT

The therapeutic activation of antitumour immunity by immune checkpoint inhibitors (ICIs) is a significant advance in cancer medicine, not least due to the prospect of long-term remission. However, many patients are unresponsive to ICI therapy and may experience serious side effects; companion biomarkers are urgently needed to help inform ICI prescribing decisions. We present the IMMUNETS networks of gene coregulation in five key immune cell types and their application to interrogate control of nivolumab response in advanced melanoma cohorts. The results evidence a role for each of the IMMUNETS cell types in ICI response and in driving tumour clearance with independent cohorts from TCGA. As expected, 'immune hot' status, including T cell proliferation, correlates with response to first-line ICI therapy. Genes regulated in NK, dendritic, and B cells are the most prominent discriminators of nivolumab response in patients that had previously progressed on another ICI. Multivariate analysis controlling for tumour stage and age highlights CIITA and IKZF3 as candidate prognostic biomarkers. IMMUNETS provide a resource for network biology, enabling context-specific analysis of immune components in orthogonal datasets. Overall, our results illuminate the relationship between the tumour microenvironment and clinical trajectories, with potential implications for precision medicine.

14.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37171130

ABSTRACT

BACKGROUND: Integration of data from multiple domains can greatly enhance the quality and applicability of knowledge generated in analysis workflows. However, working with health data is challenging, requiring careful preparation in order to support meaningful interpretation and robust results. Ontologies encapsulate relationships between variables that can enrich the semantic content of health datasets to enhance interpretability and inform downstream analyses. FINDINGS: We developed an R package for electronic health data preparation, "eHDPrep," demonstrated upon a multimodal colorectal cancer dataset (661 patients, 155 variables; Colo-661); a further demonstrator is taken from The Cancer Genome Atlas (459 patients, 94 variables; TCGA-COAD). eHDPrep offers user-friendly methods for quality control, including internal consistency checking and redundancy removal with information-theoretic variable merging. Semantic enrichment functionality is provided, enabling generation of new informative "meta-variables" according to ontological common ancestry between variables, demonstrated with SNOMED CT and the Gene Ontology in the current study. eHDPrep also facilitates numerical encoding, variable extraction from free text, completeness analysis, and user review of modifications to the dataset. CONCLUSIONS: eHDPrep provides effective tools to assess and enhance data quality, laying the foundation for robust performance and interpretability in downstream analyses. Application to multimodal colorectal cancer datasets resulted in improved data quality, structuring, and robust encoding, as well as enhanced semantic information. We make eHDPrep available as an R package from CRAN (https://cran.r-project.org/package = eHDPrep) and GitHub (https://github.com/overton-group/eHDPrep).


Subject(s)
Colorectal Neoplasms , Semantics , Humans , Gene Ontology , Data Accuracy , Quality Control , Colorectal Neoplasms/genetics
15.
Biomolecules ; 12(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36291720

ABSTRACT

Loss PTEN function is one of the most common events driving aggressive prostate cancers and biochemically, PTEN is a lipid phosphatase which opposes the activation of the oncogenic PI3K-AKT signalling network. However, PTEN also has additional potential mechanisms of action, including protein phosphatase activity. Using a mutant enzyme, PTEN Y138L, which selectively lacks protein phosphatase activity, we characterised genetically modified mice lacking either the full function of PTEN in the prostate gland or only lacking protein phosphatase activity. The phenotypes of mice carrying a single allele of either wild-type Pten or PtenY138L in the prostate were similar, with common prostatic intraepithelial neoplasia (PIN) and similar gene expression profiles. However, the latter group, lacking PTEN protein phosphatase activity additionally showed lymphocyte infiltration around PIN and an increased immune cell gene expression signature. Prostate adenocarcinoma, elevated proliferation and AKT activation were only frequently observed when PTEN was fully deleted. We also identify a common gene expression signature of PTEN loss conserved in other studies (including Nkx3.1, Tnf and Cd44). We provide further insight into tumour development in the prostate driven by loss of PTEN function and show that PTEN protein phosphatase activity is not required for tumour suppression.


Subject(s)
PTEN Phosphohydrolase , Prostatic Neoplasms , Animals , Male , Mice , Lipids , Phosphatidylinositol 3-Kinases/metabolism , Phosphoprotein Phosphatases , Prostate/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
16.
Proteins ; 79(4): 1027-33, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21246630

ABSTRACT

Production of diffracting crystals is a critical step in determining the three-dimensional structure of a protein by X-ray crystallography. Computational techniques to rank proteins by their propensity to yield diffraction-quality crystals can improve efficiency in obtaining structural data by guiding both protein selection and construct design. XANNpred comprises a pair of artificial neural networks that each predict the propensity of a selected protein sequence to produce diffraction-quality crystals by current structural biology techniques. Blind tests show XANNpred has accuracy and Matthews correlation values ranging from 75% to 81% and 0.50 to 0.63 respectively; values of area under the receiver operator characteristic (ROC) curve range from 0.81 to 0.88. On blind test data XANNpred outperforms the other available algorithms XtalPred, PXS, OB-Score, and ParCrys. XANNpred also guides construct design by presenting graphs of predicted propensity for diffraction-quality crystals against residue sequence position. The XANNpred-SG algorithm is likely to be most useful to target selection in structural genomics consortia, while the XANNpred-PDB algorithm is more suited to the general structural biology community. XANNpred predictions that include sliding window graphs are freely available from http://www.compbio.dundee.ac.uk/xannpred


Subject(s)
Computational Biology/methods , Crystallization/methods , Neural Networks, Computer , Proteins/chemistry , Software , Databases, Protein , ROC Curve
17.
Expert Rev Mol Diagn ; 21(12): 1257-1271, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34666586

ABSTRACT

INTRODUCTION: Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED: Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION: PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Biomarkers, Tumor/genetics , Ethnicity/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , RNA, Long Noncoding/genetics
18.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33920039

ABSTRACT

The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.


Subject(s)
Radiation Exposure , Torpor/physiology , Zebrafish/physiology , Animals , Circadian Rhythm/genetics , Circadian Rhythm/radiation effects , Dose-Response Relationship, Radiation , Endoplasmic Reticulum-Associated Degradation/radiation effects , Gene Expression Regulation/radiation effects , Gene Regulatory Networks/radiation effects , Melatonin/pharmacology , Models, Animal , Oxidative Phosphorylation/radiation effects , Reproducibility of Results , Stress, Physiological/genetics , Stress, Physiological/radiation effects , Survival Analysis , Temperature , Transcriptome/genetics , Transcriptome/radiation effects , Zebrafish/genetics
19.
J Struct Funct Genomics ; 11(2): 167-80, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20419351

ABSTRACT

The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.


Subject(s)
Laboratories/organization & administration , Proteins/chemistry , Proteins/metabolism , Proteomics/organization & administration , Computational Biology , Crystallization , Humans , Proteins/genetics , Scotland
20.
Nucleic Acids Res ; 36(Web Server issue): W190-6, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18385152

ABSTRACT

TarO (http://www.compbio.dundee.ac.uk/taro) offers a single point of reference for key bioinformatics analyses relevant to selecting proteins or domains for study by structural biology techniques. The protein sequence is analysed by 17 algorithms and compared to 8 databases. TarO gathers putative homologues, including orthologues, and then obtains predictions of properties for these sequences including crystallisation propensity, protein disorder and post-translational modifications. Analyses are run on a high-performance computing cluster, the results integrated, stored in a database and accessed through a web-based user interface. Output is in tabulated format and in the form of an annotated multiple sequence alignment (MSA) that may be edited interactively in the program Jalview. TarO also simplifies the gathering of additional annotations via the Distributed Annotation System, both from the MSA in Jalview and through links to Dasty2. Routes to other information gateways are included, for example to relevant pages from UniProt, COG and the Conserved Domains Database. Open access to TarO is available from a guest account with private accounts for academic use available on request. Future development of TarO will include further analysis steps and integration with the Protein Information Management System (PIMS), a sister project in the BBSRC 'Structural Proteomics of Rational Targets' initiative.


Subject(s)
Proteins/chemistry , Sequence Analysis, Protein , Software , Algorithms , Databases, Protein , Internet , Protein Structure, Tertiary , Proteins/physiology , Sequence Alignment , Sequence Homology, Amino Acid , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL