Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 13(1): 1998, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737630

ABSTRACT

Prevalence estimates are critical for malaria programming efforts but generating these from non-malaria surveys is not standard practice. Malaria prevalence estimates for 6-59-month-old Nigerian children were compared between two national household surveys performed simultaneously in 2018: a Demographic and Health Survey (DHS) and the Nigeria HIV/AIDS Indicator and Impact Survey (NAIIS). DHS tested via microscopy (n = 8298) and HRP2-based rapid diagnostic test (RDT, n = 11,351), and NAIIS collected dried blood spots (DBS) which were later tested for histidine-rich protein 2 (HRP2) antigen (n = 8029). National Plasmodium falciparum prevalence was 22.6% (95% CI 21.2- 24.1%) via microscopy and 36.2% (34.6- 37.8%) via RDT according to DHS, and HRP2 antigenemia was 38.3% (36.7-39.9%) by NAIIS DBS. Between the two surveys, significant rank-order correlation occurred for state-level malaria prevalence for RDT (Rho = 0.80, p < 0.001) and microscopy (Rho = 0.75, p < 0.001) versus HRP2. RDT versus HRP2 positivity showed 24 states (64.9%) with overlapping 95% confidence intervals from the two independent surveys. P. falciparum prevalence estimates among 6-59-month-olds in Nigeria were highly concordant from two simultaneous, independently conducted household surveys, regardless of malaria test utilized. This provides evidence for the value of post-hoc laboratory HRP2 detection to leverage non-malaria surveys with similar sampling designs to obtain accurate P. falciparum estimates.


Subject(s)
Acquired Immunodeficiency Syndrome , Malaria, Falciparum , Child , Child, Preschool , Humans , Infant , Antigens, Protozoan , Diagnostic Tests, Routine , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Nigeria/epidemiology , Plasmodium falciparum , Prevalence , Proteins , Protozoan Proteins , Sensitivity and Specificity , Health Surveys
2.
PLoS Negl Trop Dis ; 16(1): e0010049, 2022 01.
Article in English | MEDLINE | ID: mdl-34986142

ABSTRACT

BACKGROUND: Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. METHODOLOGY/PRINCIPAL FINDINGS: From 2014-2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley's K-function and Kulldorff's spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. CONCLUSIONS/SIGNIFICANCE: From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.


Subject(s)
Malaria/blood , Malaria/parasitology , Plasmodium malariae , Plasmodium vivax , Antibodies, Protozoan/blood , Antigens, Protozoan , Child , Cluster Analysis , DNA, Protozoan/genetics , Female , Haiti/epidemiology , Humans , Immunoglobulin G/blood , Malaria/epidemiology , Male , Seroepidemiologic Studies , Species Specificity , Time Factors
3.
Sci Rep ; 10(1): 8443, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439948

ABSTRACT

Microscopy is the gold standard for malaria epidemiology, but laboratory and point-of-care (POC) tests detecting parasite antigen, DNA, and human antibodies against malaria have expanded this capacity. The island nation of Haiti is endemic for Plasmodium falciparum (Pf) malaria, though at a low national prevalence and heterogenous geospatial distribution. In 2015 and 2016, serosurveys were performed of children (ages 6-7 years) sampled in schools in Saut d'Eau commune (n = 1,230) and Grand Anse department (n = 1,664) of Haiti. Children received malaria antigen rapid diagnostic test and provided a filter paper blood sample for further laboratory analysis of the Pf histidine-rich protein 2 (HRP2) antigen, Pf DNA, and anti-Pf IgG antibodies. Prevalence of Pf infection ranged from 0.0-16.7% in 53 Saut d'Eau schools, and 0.0-23.8% in 56 Grand Anse schools. Anti-Pf antibody carriage exceeded 80% of students in some schools from both study sites. Geospatial prediction ellipses were created to indicate clustering of positive tests within the survey areas and overlay of all prediction ellipses for the different types of data revealed regions with high likelihood of active and ongoing Pf malaria transmission. The geospatial utilization of different types of Pf data can provide high confidence for spatial epidemiology of the parasite.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , DNA, Protozoan/genetics , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/immunology , Child , DNA, Protozoan/analysis , Female , Geography , Haiti/epidemiology , Humans , Immunologic Tests , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL