Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673915

ABSTRACT

Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.


Subject(s)
Disease Models, Animal , Parkinson Disease , Parkinson Disease/immunology , Parkinson Disease/pathology , Parkinson Disease/etiology , Animals , Humans , Immune System/immunology , Immune System/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology
2.
Metab Brain Dis ; 38(1): 307-321, 2023 01.
Article in English | MEDLINE | ID: mdl-36305999

ABSTRACT

Both type-1 and type-2 DM are related to an increased risk of cognitive impairment, neurovascular complications, and dementia. The primary triggers for complications are hyperglycemia and concomitant insulin resistance in type-2 DM. However, the diverse mechanisms in the pathogenesis of diabetes-related neurovascular complications and extracellular matrix (ECM) remodeling in type-1 and 2 have not been elucidated yet. Here, we investigated the high fat-high sucrose (HFHS) feeding model and streptozotocin-induced type-1 DM model to study the early effects of hyperglycemia with or without insulin resistance to demonstrate the brain microcirculatory changes, perivascular ECM alterations in histological sections and 3D-reconstructed cleared brain tissues. One of the main findings of this study was robust rarefaction in brain microvessels in both models. Interestingly, the HFHS model leads to widespread non-functional angiogenesis, but the type-1 DM model predominantly in the rostral brain. Rarefaction was accompanied by basement membrane thickening and perivascular collagen accumulation in type-1 DM; more severe blood-brain barrier leakage, and disruption of perivascular ECM organization, mainly of elastin and collagen fibers' structural integrity in the HFHS model. Our results point out that the downstream mechanisms of the long-term vascular complications of hyperglycemia models are structurally distinctive and may have implications for appropriate treatment options.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Humans , Microcirculation , Brain/pathology , Hyperglycemia/pathology , Diabetes Mellitus, Type 2/pathology
3.
Eur J Neurosci ; 56(9): 5453-5475, 2022 11.
Article in English | MEDLINE | ID: mdl-34182602

ABSTRACT

The brain is a highly vascularized tissue protected by the blood-brain barrier (BBB), a complex structure allowing only necessary substances to pass through into the brain while limiting the entrance of harmful toxins. The BBB comprises several components, and the most prominent features are tight junctions between endothelial cells (ECs), which are further wrapped in a layer of pericytes. Pericytes are multitasked cells embedded in a thick basement membrane (BM) that consists of a fibrous extracellular matrix (ECM) and are surrounded by astrocytic endfeet. The primary function of astrocytes and pericytes is to provide essential blood supply and vital nutrients to the brain. In Alzheimer's disease (AD), long-term neuroinflammatory cascades associated with infiltration of harmful neurotoxic proteins may lead to BBB dysfunction and altered ECM components resulting in brain homeostatic imbalance, synaptic damage, and declined cognitive functions. Moreover, BBB structure and functional integrity may be lost due to induced ECM alterations, astrocyte damage, and pericytes dysfunction, leading to amyloid-beta (Aß) hallmarks deposition in different brain regions. Herein, we highlight how BBB, ECM, astrocytes, and pericytes dysfunction can play a leading role in AD's pathogenesis and discuss their impact on brain functions.


Subject(s)
Alzheimer Disease , Pericytes , Humans , Pericytes/metabolism , Pericytes/pathology , Astrocytes/metabolism , Alzheimer Disease/metabolism , Endothelial Cells/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
4.
Sensors (Basel) ; 22(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270972

ABSTRACT

The Unified Parkinson's Disease Rating Scale (UPDRS) is a subjective Parkinson's Disease (PD) physician scoring/monitoring system. To date, there is no single upper limb wearable/non-contact system that can be used objectively to assess all UPDRS-III motor system subgroups (i.e., tremor (T), rigidity (R), bradykinesia (B), gait and posture (GP), and bulbar anomalies (BA)). We evaluated the use of a non-contact hand motion tracking system for potential extraction of GP information using forearm pronation-supination (P/S) motion parameters (speed, acceleration, and frequency). Twenty-four patients with idiopathic PD participated, and their UPDRS data were recorded bilaterally by physicians. Pearson's correlation, regression analyses, and Monte Carlo validation was conducted for all combinations of UPDRS subgroups versus motion parameters. In the 262,125 regression models that were trained and tested, the models within 1% of the lowest error showed that the frequency of P/S contributes to approximately one third of all models; while speed and acceleration also contribute significantly to the prediction of GP from the left-hand motion of right handed patients. In short, the P/S better indicated GP when performed with the non-dominant hand. There was also a significant negative correlation (with medium to large effect size, range: 0.3-0.58) between the P/S speed and the single BA score for both forearms and combined UPDRS score for the dominant hand. This study highlights the potential use of wearable or non-contact systems for forearm P/S to remotely monitor and predict the GP information in PD.


Subject(s)
Parkinson Disease , Gait , Gait Analysis , Humans , Parkinson Disease/diagnosis , Posture , Pronation , Supination , Upper Extremity
5.
J Headache Pain ; 23(1): 107, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986251

ABSTRACT

BACKGROUND: Unlike the spontaneously appearing aura in migraineurs, experimentally, cortical spreading depression (CSD), the neurophysiological correlate of aura is induced by non-physiological stimuli. Consequently, neural mechanisms involved in spontaneous CSD generation, which may provide insight into how migraine starts in an otherwise healthy brain, remain largely unclear. We hypothesized that CSD can be physiologically induced by sensory stimulation in primed mouse brain. METHODS: Cortex was made susceptible to CSD with partial inhibition of Na+/K+-ATPase by epidural application of a low concentration of Na+/K+-ATPase blocker ouabain, allowing longer than 30-min intervals between CSDs or by knocking-down α2 subunit of Na+/K+-ATPase, which is crucial for K+ and glutamate re-uptake, with shRNA. Stimulation-triggered CSDs and extracellular K+ changes were monitored in vivo electrophysiologically and a K+-sensitive fluoroprobe (IPG-4), respectively. RESULTS: After priming with ouabain, photic stimulation significantly increased the CSD incidence compared with non-stimulated animals (44.0 vs. 4.9%, p < 0.001). Whisker stimulation also significantly increased the CSD incidence, albeit less effectively (14.9 vs. 2.4%, p = 0.02). Knocking-down Na+/K+-ATPase (50% decrease in mRNA) lowered the CSD threshold in all mice tested with KCl but triggered CSDs in 14.3% and 16.7% of mice with photic and whisker stimulation, respectively. Confirming Na+/K+-ATPase hypofunction, extracellular K+ significantly rose during sensory stimulation after ouabain or shRNA treatment unlike controls. In line with the higher CSD susceptibility observed, K+ rise was more prominent after ouabain. To gain insight to preventive mechanisms reducing the probability of stimulus-evoked CSDs, we applied an A1-receptor antagonist (DPCPX) to the occipital cortex, because adenosine formed during stimulation from ATP can reduce CSD susceptibility. DPCPX induced spontaneous CSDs but only small-DC shifts along with suppression of EEG spikes during photic stimulation, suggesting that the inhibition co-activated with sensory stimulation could limit CSD ignition when K+ uptake was not sufficiently suppressed as with ouabain. CONCLUSIONS: Normal brain is well protected against CSD generation. For CSD to be ignited under physiological conditions, priming and predisposing factors are required as seen in migraine patients. Intense sensory stimulation has potential to trigger CSD when co-existing conditions bring extracellular K+ and glutamate concentrations over CSD-ignition threshold and stimulation-evoked inhibitory mechanisms are overcome.


Subject(s)
Cortical Spreading Depression , Migraine Disorders , Migraine with Aura , Adenosine Triphosphatases/pharmacology , Animals , Brain , Cortical Spreading Depression/physiology , Glutamic Acid , Mice , Ouabain/pharmacology , RNA, Small Interfering/pharmacology
6.
J Neurochem ; 156(6): 848-866, 2021 03.
Article in English | MEDLINE | ID: mdl-32939791

ABSTRACT

This study aimed to investigate and compare cell growth manners and functional differences of primary cortical neurons cultured on either poly-d-lysine (PDL) and or Matrigel, to delineate the role of extracellular matrix on providing resemblance to in vivo cellular interactions in nervous tissue. Primary cortical neurons, obtained from embryonic day 15 mice pups, seeded either on PDL- or Matrigel-coated culture ware were investigated by DIC/bright field and fluorescence/confocal microscopy for their morphology, 2D and 3D structure, and distribution patterns. Patch clamp, western blot, and RT-PCR studies were performed to investigate neuronal firing thresholds and sodium channel subtypes Nav1.2 and Nav1.6 expression. Cortical neurons cultured on PDL coating possessed a 2D structure composed of a few numbers of branched and tortuous neurites that contacted with each other in one to one manner, however, neurons on Matrigel coating showed a more complicated dimensional network that depicted tight, linear axonal bundles forming a 3D interacted neuron-astrocyte construction. This difference in growth patterns also showed a significant alteration in neuronal firing threshold which was recorded between 80 < Iinj > 120 pA on PDL and 2 < Iinj > 160 pA on Matrigel. Neurons grown up on Matrigel showed increased levels of sodium channel protein expression of Nav1.2 and Nav1.6 compared to neurons on PDL. These results have demonstrated that a 3D interacted neuron-astrocyte construction on Matrigel enhances the development of Nav1.2 and Nav1.6 in vitro and decreases neuronal firing threshold by 40 times compared to conventional PDL, resembling in vivo neuronal networks and hence would be a better in vitro model of adult neurons.


Subject(s)
Astrocytes/physiology , Astrocytes/ultrastructure , Collagen , Laminin , Neurons/physiology , Neurons/ultrastructure , Proteoglycans , Voltage-Gated Sodium Channels/biosynthesis , Animals , Cerebral Cortex/cytology , Drug Combinations , Electrophysiological Phenomena , Embryo, Mammalian/physiology , Female , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , NAV1.2 Voltage-Gated Sodium Channel/biosynthesis , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/biosynthesis , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurites/physiology , Patch-Clamp Techniques , Pregnancy , Primary Cell Culture
7.
Headache ; 61(10): 1562-1567, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34841519

ABSTRACT

OBJECTIVE: To analyze occipital bending (OB) frequency in patients with migraine with visual aura compared with those without aura. BACKGROUND: A unique type of asymmetry in the human brain in which one occipital pole crosses the midline and bends over the other pole is called OB. OB frequency has been shown to be related to major psychiatric diseases. Hence, it may suggest more than an anatomical variation. Structural differences in the brain have been demonstrated but unequivocally between patients with migraine with aura and without aura. OB is newly recognized, and we aimed to evaluate its frequency among patients with migraine. METHODS: For this retrospective cohort study, we reviewed our records from 2016 to 2021 from a database of the outpatient headache clinic of Koç University Hospital. RESULTS: We found 84 patients with migraine who fulfilled diagnostic criteria for migraine with aura and migraine without aura and also had cranial magnetic resonance imaging. The median age of the population was 40 (IQR, 32-52). The female-to-male ratio of participants was 2:1. A quarter of the patients had visual aura. The prevalence of OB in patients with migraine in our retrospective study was 33.3% (28/84). Between our study groups, OB was significantly higher in patients with migraine with visual aura (57.1%, 12 out of 21 patients) than in those without aura (25.4%, 16 out of 63), (odds ratio 3.9 (95% confidence interval 1.4 to 11.0), p = 0.015). CONCLUSION: OB frequency is two times higher in patients with migraine with visual aura. It may have pathophysiological implications.


Subject(s)
Migraine with Aura/physiopathology , Occipital Lobe/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Migraine Disorders/physiopathology , Retrospective Studies , Turkey
8.
Metab Brain Dis ; 36(8): 2553-2566, 2021 12.
Article in English | MEDLINE | ID: mdl-34118020

ABSTRACT

Hypertension (HT) is one of the main causes of vascular dementia, lead to cognitive decline. Here, we investigated the relationship between cerebral microvessels, pericytes, extracellular matrix (ECM) accumulation, blood-brain barrier (BBB) breakdown, and memory impairment at mid-life in a chronic hypertension animal model. Spontaneously hypertensive rats (SHRs) (n = 20) are chosen for the model and age matched Wistar rats (n = 16) as controls. Changes in brain microvasculature and in vitro experiments are shown with immunofluorescence studies and cognition with open field, novel object recognition, and Y maze tests. There was a significant reduction in pericyte coverage in SHRs (p = 0.021), while the quantitative parameters of the cerebral microvascular network were not different between groups. On the other hand, parenchymal albumin leakage, as a Blood-brain barrier (BBB) breakdown marker, was prominent in SHRs (p = 0.023). Extracellular matrix (ECM) components, collagen type 1, 3 and 4 were significantly increased (accumulated) around microvasculature in SHRs (p = 0.011, p = 0.013, p = 0.037, respectively). Furthermore, in vitro experiments demonstrated that human brain vascular pericytes but not astrocytes and endothelial cells secreted type I collagen upon TGFß1 exposure pointing out a possible role of pericytes in increased collagen accumulation around cerebral microvasculature due to HT. Furthermore, valsartan treatment decreased the amount of collagen type 1 secreted by pericytes after TGFß1 exposure. At the time of evaluation, SHRs did not demonstrate cognitive decline and memory impairments. Our results showed that chronic HT causes ECM accumulation and BBB leakage before leading to memory impairments and therefore, pericytes could be a novel target for preventing vascular dementia.


Subject(s)
Blood-Brain Barrier , Hypertension , Animals , Blood-Brain Barrier/metabolism , Collagen/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Microvessels/metabolism , Rats , Rats, Wistar
9.
Ann Neurol ; 83(1): 61-73, 2018 01.
Article in English | MEDLINE | ID: mdl-29244233

ABSTRACT

OBJECTIVE: Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS: We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS: DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION: Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.


Subject(s)
Brain Chemistry , Cortical Spreading Depression/genetics , Glycogen/metabolism , Sleep Deprivation/physiopathology , Animals , Arabinose/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Connexins/drug effects , Connexins/metabolism , Energy Metabolism , Gene Knockdown Techniques , HMGB1 Protein/metabolism , Imino Furanoses/pharmacology , Injections, Intraventricular , Mice , Monocarboxylic Acid Transporters/antagonists & inhibitors , Nerve Tissue Proteins/drug effects , Nerve Tissue Proteins/metabolism , Oligonucleotides, Antisense/pharmacology , Phloretin/pharmacology , Potassium/physiology , Sugar Alcohols/pharmacology , Vibrissae/innervation
10.
Ideggyogy Sz ; 72(7-8): 282-284, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31517462

ABSTRACT

Introduction - Although the involvement of the hypoglossal nerve together with other cranial nerves is common in several pathological conditions of the brain, particularly the brainstem, isolated hypoglossal nerve palsy is a rare condition and a diagnostic challenge. Case presentation - The presented patient arrived to the hospital with a history of slurred speech and an uncomfortable sensation on his tongue. Neurological examination showed left-sided hemiatrophy of the tongue with fasciculations and deviation towards the left side during protrusion. Based on the clinical and MRI findings, a diagnosis of hypoglossal nerve schwannoma was made. Discussion - Hypoglossal nerve palsy may arise from multiple causes such as trauma, infections, neoplasms, and endocrine, autoimmune and vascular pathologies. In our case, the isolated involvement of the hypoglossal nerve was at the skull base segment, where the damage to the hypoglossal nerve may occur mostly due to metastasis, nasopharyngeal carcinomas, nerve sheath tumors and glomus tumors. Conclusion - Because of the complexity of the region's anatomy, the patient diagnosed with hypoglossal nerve schwannoma was referred for gamma knife radiosurgery.


Subject(s)
Hypoglossal Nerve Diseases/pathology , Hypoglossal Nerve/pathology , Jugular Veins/pathology , Neurilemmoma/pathology , Cranial Nerve Neoplasms/diagnostic imaging , Humans , Hypoglossal Nerve/surgery , Hypoglossal Nerve Diseases/surgery , Magnetic Resonance Imaging , Neurilemmoma/surgery , Radiosurgery
11.
Stroke ; 49(5): 1267-1275, 2018 05.
Article in English | MEDLINE | ID: mdl-29669868

ABSTRACT

BACKGROUND AND PURPOSE: Reperfusion is the most significant determinant of good outcome after ischemic stroke. However, complete reperfusion often cannot be achieved, despite satisfactory recanalization. We hypothesized that microvascular protection was essential for achieving effective reperfusion and, hence, neuroprotection. To test this hypothesis, we have developed an in vivo model to differentially monitor parenchymal and vascular reactive oxygen species (ROS) formation. By comparing the ROS-suppressing effect of N-tert-butyl-α-phenylnitrone (PBN) with its blood-brain barrier impermeable analog 2-sulfo-phenyl-N-tert-butylnitrone (S-PBN), we assessed the impact of vascular ROS suppression alone on reperfusion and stroke outcome after recanalization. METHODS: The distal middle cerebral artery was occluded for 1 hour by compressing with a micropipette and then recanalized (n=60 Swiss mice). ROS formation was monitored for 1 hour after recanalization by intravital fluorescence microscopy in pial vasculature and cortical parenchyma with topically applied hydroethidine through a cranial window. PBN (100 mg/kg) or S-PBN (156 mg/kg) was administered shortly before recanalization, and suppression of the vascular and parenchymal hydroethidine fluorescence was examined (n=22). Microcirculatory patency, reperfusion, ischemic tissue size, and neurological outcome were also assessed in a separate group of mice 1 to 72 hours after recanalization (n=30). RESULTS: PBN and S-PBN completely suppressed the reperfusion-induced increase in ROS signal within vasculature. PBN readily suppressed ROS produced in parenchyma by 88%. S-PBN also suppressed the parenchymal ROS by 64% but starting 40 minutes later. Intriguingly, PBN and S-PBN comparably reduced the size of ischemic area by 65% and 48% (P>0.05), respectively. S-PBN restored the microvascular patency and perfusion after recanalization, suggesting that its delayed parenchymal antioxidant effect could be secondary to improved microcirculatory reperfusion. CONCLUSIONS: Promoting microvascular reperfusion by protecting vasculature can secondarily reduce parenchymal ROS formation and provide neuroprotection. The model presented can be used to directly assess pharmacological end points postulated in brain parenchyma and vasculature in vivo.


Subject(s)
Benzenesulfonates/pharmacology , Cerebral Cortex/drug effects , Cerebrovascular Circulation/drug effects , Cyclic N-Oxides/pharmacology , Infarction, Middle Cerebral Artery/metabolism , Microcirculation/drug effects , Neuroprotective Agents/pharmacology , Pia Mater/drug effects , Reactive Oxygen Species/metabolism , Animals , Blood-Brain Barrier , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Fluorescent Dyes , Infarction, Middle Cerebral Artery/pathology , Intravital Microscopy , Male , Mice , Microscopy, Fluorescence , Phenanthridines , Pia Mater/blood supply , Pia Mater/metabolism , Pia Mater/pathology , Reperfusion
12.
Ideggyogy Sz ; 71(9-10): 337-342, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30335266

ABSTRACT

BACKGROUND AND PURPOSE: Impaired shoulder function is the most disabling problem for daily life of Fascioscapulohumeral muscular dystrophy (FSHD) patients. Scapulothoracic arthrodesis can give a high impact to the functionality of patients. Here we report our experience with scapulothoracic arthrodesis and spinal stenosis surgery in FSHD patients. METHODS: 32 FSHD patients were collected between 2015-2016. Demographical and clinical features were documented. All the patients were neurologically examined. The Medical Research Council (MRC) and the FSHD evaluation scale was used to assess muscle involvement1. Scapulothoracic arthrodesis and spinal stenosis surgeries were performed in eligible patients. RESULTS: There were 16 male and 16 female (mean age 34.4 years; range 12-73) patients. 6 shoulders of 4 patients aged between 2132 years underwent scapulothoracic arthrodesis (two bilateral, one left and one right sided). Only one 63 years old female patient with severe hyperlordosis had spinal fusion surgery. All of the patients undergoing these corrective surgeries have better functionality in daily life, as well as superior shoulder elevation. CONCLUSION: Until the emergence and clinical use of novel therapeutics, surgical interventions are indicated in carefully selected patients with FSHD to improve arm movements, the posture and the quality of life of patients in general. Scapulothorosic arthrodesis is a management with good clinical results and patient satisfaction. In selected cases other corrective orthopedic surgeries like spinal fusion may also be considered.


Subject(s)
Arthrodesis/methods , Muscular Dystrophy, Facioscapulohumeral/surgery , Ribs/surgery , Scapula/surgery , Adult , Female , Humans , Male , Muscular Dystrophy, Facioscapulohumeral/physiopathology , Quality of Life , Range of Motion, Articular , Scapula/physiopathology , Thoracic Wall/surgery , Treatment Outcome
13.
Appl Opt ; 55(33): 9526-9531, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27869849

ABSTRACT

Although progress has been made for recanalization therapies after ischemic stroke, post-treatment imaging studies show that tissue reperfusion cannot be attained despite satisfactory recanalization in a significant percentage of patients. Hence, investigation of microcirculatory changes in both surface and deep cortical levels after ischemia reperfusion is important for understanding the post-stroke blood flow dynamics. In this study, we applied optical coherence tomography (OCT) imaging of cerebral blood flow for the quantification of the microcirculatory changes. We obtained OCT microangiogram of the brain cortex in a mouse stroke model and analyzed the data to trace changes in the capillary perfusion level (CPL) before, during, and after the stroke. The CPL changes were estimated in 1 and 2 h ischemia groups as well as in a non-ischemic sham-operated group. For the estimation of CPL, a decorrelation amplitude-based algorithm was implemented and used. As a result, the CPL considerably decreased during ischemia but recovered to the baseline when recanalization was performed 1 h after ischemia; however, the CPL was significantly reduced when recanalization was delayed to 2 h after ischemia. These data demonstrate that ischemia causes microcirculation dysfunction, leading to a decreased capillary reperfusion after recanalization. Microcirculatory no-reflow warrants more rigorous assessment in clinical trials, whereas advanced optical imaging techniques may provide mechanistic insight and solutions in experimental studies.


Subject(s)
Cerebrovascular Circulation , Microcirculation , Stroke/physiopathology , Tomography, Optical Coherence , Animals , Brain/blood supply , Mice , Reperfusion
14.
J Clin Pediatr Dent ; 40(3): 211-4, 2016.
Article in English | MEDLINE | ID: mdl-27472568

ABSTRACT

OBJECTIVE: To determine the association between the ApaI, FokI, Cdx2 and TaqI polymorphisms of vitamin D receptor (VDR) gene in caries-active (high-moderate) and caries-free children. STUDY DESIGN: A hundred and fifty children (75 males, 75 females, mean age: 10.19 ± 1.61 years) were included in the study. The subjects were divided into three groups as high caries risk group (DMFT, dft>4)(n=55), moderate caries risk group (DMFT, dft=1-4)(n=57) and caries-free group (n=38). From each individual, blood samples were collected and DNA was extracted. The VDR gene was genotyped for the polymorphisms ApaI, FokI, Cdx2 and TaqI using polymerase chain reaction and restriction fragment length polymorphism methods. All data were analyzed by chi-square test, Fisher's exact test and t test. RESULTS: There was statistically significant difference in the frequency of TaqI genotypes (tt) between caries-active and caries-free children (p=0.029). No statistically significant differences were detected between ApaI, FokI, Cdx2 genotypes and dental caries. CONCLUSION: In the future, VDR gene polymorphisms may be used as a marker for the identification of patients with high caries risk.


Subject(s)
Dental Caries/genetics , Polymorphism, Genetic/genetics , Receptors, Calcitriol/genetics , CDX2 Transcription Factor/genetics , Child , Dental Plaque Index , Deoxyribonucleases, Type II Site-Specific/genetics , Dietary Sucrose/administration & dosage , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Polymorphism, Restriction Fragment Length/genetics , Toothbrushing/methods , Transcription Factors/genetics
15.
Int J Neurosci ; 125(12): 941-6, 2015.
Article in English | MEDLINE | ID: mdl-25340256

ABSTRACT

Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.


Subject(s)
Brain/drug effects , Cortical Spreading Depression/drug effects , Cytidine Diphosphate Choline/pharmacology , Nootropic Agents/pharmacology , Poloxamer/pharmacology , Analysis of Variance , Animals , Brain/blood supply , Cerebrovascular Circulation/drug effects , Mice
16.
Am J Med Genet A ; 164A(10): 2510-3, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24989684

ABSTRACT

We describe a 28-year-old Turkish man with consanguineous parents who presented with an aged appearance with prematurely gray hair and scleroderma-like skin, spastic paraplegia, and apparent disability. The proband and each of his parents were heterozygous for a mutation in WRN, which could not explain his symptoms. Exome sequencing of the proband's blood DNA showed a homozygous c.626-1G > C mutation in intron 5 of the SAMHD1 gene, which encodes a triphosphohydrolase involved in the regulation of intracellular dNTP pools and which is mutated in Aicardi-Goutieres syndrome. The RNA studies confirmed aberrant splicing of exon 6, and family studies showed that both parents are heterozygous for this mutation. We conclude that mutations in SAMHD1 - in addition to causing an early-onset form of encephalopathy in Aicardi-Goutieres syndrome - may present with modest signs of accelerated aging similar to Werner syndrome. The extent to which heterozygosity at the WRN locus may modify the effect of biallelic SAMHD1 mutations is unknown. It is conceivable that synergistic effects of these two mutations might be responsible for the unusual phenotype.


Subject(s)
Autoimmune Diseases of the Nervous System/genetics , Exodeoxyribonucleases/genetics , Nervous System Malformations/genetics , RecQ Helicases/genetics , Adult , Heterozygote , Homozygote , Humans , Male , Monomeric GTP-Binding Proteins/genetics , Mutation/genetics , SAM Domain and HD Domain-Containing Protein 1 , Werner Syndrome/genetics , Werner Syndrome Helicase
17.
Front Cell Neurosci ; 18: 1403974, 2024.
Article in English | MEDLINE | ID: mdl-38746079

ABSTRACT

Introduction: Multiple sclerosis (MS) is one of the most common causes of disability in young adults. Nearly, 85% of MS cases start with attacks and remissions, classified as relapsing-remitting multiple sclerosis (RRMS). With repeating attacks, MS causes brain-spinal cord atrophy and enhanced disability as disease progresses. PLP-induced EAE is one of the most established models for pathophysiology and treatment of RRMS. Recent studies demonstrated the possible role of pericytes in perivascular and intra-lesional fibrosis in PLP-induced EAE, whose importance remains elusive. Hence, we have investigated the possible role of pericytes in fibrosis formation and amelioration with a hemichannel blocker, Carbenoxolone (CBX). Methods: PLP-induced experimental autoimmune encephalitis (EAE) model is used and the effect of CBX is investigated. Clinical scores were recorded and followed. Perivascular Collagen 1 and 3 accumulations were demonstrated as markers of fibrosis in the spinal cord. To delineate the role of pericytes, human brain vascular pericytes (HBVP) were incubated with the sera of MS patients to induce in-vitro MS model and the fibrosis formation was investigated. Results: In the PLP induced in-vivo model, both intracerebroventricular and intraperitoneal CBX have significantly mitigated the disease progression followed by clinical scores, demyelination, and fibrosis. Moreover, CBX significantly mitigated MS-serum-induced fibrosis in the HBVP cell culture. Discussion: The study demonstrated two important findings. First, CBX decreases fibrosis formation in both in-vivo and in-vitro MS models. Secondly, it improves neurological scores and decreases demyelination in the EAE model. Therefore, CBX can be potential novel therapeutic option in treating Multiple Sclerosis.

18.
Biomater Sci ; 12(10): 2561-2578, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38602364

ABSTRACT

The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.


Subject(s)
Drug Delivery Systems , Exosomes , Hydrogels , Exosomes/chemistry , Exosomes/metabolism , Hydrogels/chemistry , Hydrogels/administration & dosage , Humans , Animals , Central Nervous System/metabolism , Central Nervous System/drug effects , Blood-Brain Barrier/metabolism , Tissue Engineering , Drug Carriers/chemistry
19.
Noro Psikiyatr Ars ; 60(3): 292-294, 2023.
Article in English | MEDLINE | ID: mdl-37645079

ABSTRACT

Many researches have shown that coronavirus infection can lead to neurological symptoms. The most common symptom is headache. Calcitonin gene-related peptide (CGRP), which has an important role in the pathophysiology of migraine, may have an active role in persistent headaches after COVID, due to the structural similarity between the CGRP receptor and the SARS-CoV-2 spike protein. In this case report, the effect of the anti-CGRP monoclonal antibody on the migraine attack occurring after COVID-19 m-RNA vaccine will be discussed. A 55-year-old female patient who is followed up with a diagnosis of chronic migraine, had severe and throbbing headache that started after the COVID-19 m-RNA vaccine. After galcanezumab (CGRP monoclonal antibody - CGRP mAb) was started in the patient whose complaints did not regress despite the adjustment of the current drug doses, clinically significant improvement was observed in her complaints after the first dose and it was planned to continue with 120 mg CGRP mAb per month in her follow-ups.

20.
Otol Neurotol ; 44(7): e463-e470, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37317507

ABSTRACT

HYPOTHESIS: To examine the protective effects of infliximab (INF) against kanamycin (KM)-induced hearing loss. BACKGROUND: Tumor necrosis factor α blockers can reduce cellular inflammatory reactions and decrease cell death. METHODS: Thirty-six rats with normal hearing were randomly divided into six groups. The first group was injected with 400 mg/kg KM intramuscularly (IM), the second group with 7 mg/kg INF intraperitoneally (IP) and 400 mg/kg KM IM, the third group with 7 mg/kg INF IP and 200 mg/kg KM IM, and the fourth group with 1 mg/kg 6-methylprednisolone (MP) IP and 400 mg/kg KM IM. Group 5 was injected with 1 mg/kg MP IP and 200 mg/kg KM IM, and group 6 with saline IP once. Auditory brain-stem response (ABR) for hearing thresholds was performed on days 7 and 14. From the frozen sections of the cochlea, the area of the stria vascularis, the number of neurons in the spiral ganglion, the fluorescence intensity of hair cells (FIHC), postsynaptic density (PSD), and presynaptic ribbons (PSRs) were calculated. RESULTS: The KM-induced increase in hearing thresholds was detected on the 14th day. Hearing was only preserved in the group treated with INF after low-dose KM exposure but not in the groups that received high-dose KM. The FIHC, excitatory PSD, and PSR were preserved only in the INF-treated group after half-dose KM exposure. In MP groups, FIHC, excitatory PSD, and PSR were significantly lower than in the control group. CONCLUSIONS: Our results support that tumor necrosis factor-based inflammation may play a role in the ototoxicity mechanism.


Subject(s)
Kanamycin , Ototoxicity , Rats , Animals , Kanamycin/toxicity , Infliximab/pharmacology , Infliximab/therapeutic use , Ototoxicity/etiology , Ototoxicity/prevention & control , Cochlea/pathology , Stria Vascularis/pathology , Evoked Potentials, Auditory, Brain Stem
SELECTION OF CITATIONS
SEARCH DETAIL