Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810249

ABSTRACT

Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4-/- mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.


Subject(s)
Arrhythmias, Cardiac/genetics , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , TRPM Cation Channels/metabolism , Action Potentials , Animals , Cells, Cultured , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , TRPM Cation Channels/genetics , Ventricular Function
2.
J Gen Physiol ; 153(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33533890

ABSTRACT

The dynein motor protein transports proteins away from the cell membrane along the microtubule network. Recently, we found the microtubule network was important for regulating the membrane abundance of voltage-gated Kv7.4 potassium channels in vascular smooth muscle. Here, we aimed to investigate the influence of dynein on the microtubule-dependent internalization of the Kv7.4 channel. Patch-clamp recordings from HEK293B cells showed Kv7.4 currents were increased after inhibiting dynein function with ciliobrevin D or by coexpressing p50/dynamitin, which specifically interferes with dynein motor function. Mutation of a dynein-binding site in the Kv7.4 C terminus increased the Kv7.4 current and prevented p50 interference. Structured illumination microscopy, proximity ligation assays, and coimmunoprecipitation showed colocalization of Kv7.4 and dynein in mesenteric artery myocytes. Ciliobrevin D enhanced mesenteric artery relaxation to activators of Kv7.2-Kv7.5 channels and increased membrane abundance of Kv7.4 protein in isolated smooth muscle cells and HEK293B cells. Ciliobrevin D failed to enhance the negligible S-1-mediated relaxations after morpholino-mediated knockdown of Kv7.4. Mass spectrometry revealed an interaction of dynein with caveolin-1, confirmed using proximity ligation and coimmunoprecipitation assays, which also provided evidence for interaction of caveolin-1 with Kv7.4, confirming that Kv7.4 channels are localized to caveolae in mesenteric artery myocytes. Lastly, cholesterol depletion reduced the interaction of Kv7.4 with caveolin-1 and dynein while increasing the overall membrane expression of Kv7.4, although it attenuated the Kv7.4 current in oocytes and interfered with the action of ciliobrevin D and channel activators in arterial segments. Overall, this study shows that dynein can traffic Kv7.4 channels in vascular smooth muscle in a mechanism dependent on cholesterol-rich caveolae.


Subject(s)
Dyneins , KCNQ Potassium Channels , Cell Membrane , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle
3.
Front Mol Biosci ; 7: 14, 2020.
Article in English | MEDLINE | ID: mdl-32118040

ABSTRACT

Purpose: Both cardiomyocytes and cardiac fibroblasts (CF) play essential roles in cardiac development, function, and remodeling. Properties of 3D co-cultures are incompletely understood. Hence, 3D co-culture of cardiomyocytes and CF was characterized, and selected features compared with single-type and 2D culture conditions. Methods: Human cardiomyocytes derived from induced-pluripotent stem cells (hiPSC-CMs) were obtained from Cellular Dynamics or Ncardia, and primary human cardiac fibroblasts from ScienCell. Cardiac spheroids were investigated using cryosections and whole-mount confocal microscopy, video motion analysis, scanning-, and transmission-electron microscopy (SEM, TEM), action potential recording, and quantitative PCR (qPCR). Results: Spheroids formed in hanging drops or in non-adhesive wells showed spontaneous contractions for at least 1 month with frequent media changes. SEM of mechanically opened spheroids revealed a dense inner structure and no signs of blebbing. TEM of co-culture spheroids at 1 month showed myofibrils, intercalated disc-like structures and mitochondria. Ultrastructural features were comparable to fetal human myocardium. We then assessed immunostained 2D cultures, cryosections of spheroids, and whole-mount preparations by confocal microscopy. CF in co-culture spheroids assumed a small size and shape similar to the situation in ventricular tissue. Spheroids made only of CF and cultured for 3 weeks showed no stress fibers and strongly reduced amounts of alpha smooth muscle actin compared to early spheroids and 2D cultures as shown by confocal microscopy, western blotting, and qPCR. The addition of CF to cardiac spheroids did not lead to arrhythmogenic effects as measured by sharp-electrode electrophysiology. Video motion analysis showed a faster spontaneous contraction rate in co-culture spheroids compared to pure hiPSC-CMs, but similar contraction amplitudes and kinetics. Spontaneous contraction rates were not dependent on spheroid size. Applying increasing pacing frequencies resulted in decreasing contraction amplitudes without positive staircase effect. Gene expression analysis of selected cytoskeleton and myofibrillar proteins showed more tissue-like expression patterns in co-culture spheroids than with cardiomyocytes alone or in 2D culture. Conclusion: We demonstrate that the use of 3D co-culture of hiPSC-CMs and CF is superior over 2D culture conditions for co-culture models and more closely mimicking the native state of the myocardium with relevance to drug development as well as for personalized medicine.

4.
Front Physiol ; 9: 177, 2018.
Article in English | MEDLINE | ID: mdl-29568272

ABSTRACT

Transient receptor potential melastatin member 4 (TRPM4), a non-selective cation channel, mediates cell membrane depolarization in immune response, insulin secretion, neurological disorders, and cancer. Pathological variants in TRPM4 gene have been linked to several cardiac phenotypes such as complete heart block (CHB), ventricular tachycardia, and Brugada syndrome (BrS). Despite recent findings regarding the functional implications of TRPM4 in cardiac diseases, the molecular and cellular mechanisms leading to altered conduction are poorly understood. In the present study, we identify and characterize four novel TRPM4 variants found in patients with CHB or ventricular fibrillation. Three of them, p.A101T, p.S1044C and a double variant p.A101T/P1204L, led to a decreased expression and function of the channel. On the contrary, the variant p.Q854R showed an increase in TRPM4 current. Recent evidence indicates that altered degradation rate of mutant proteins represents a pathogenic mechanism underlying genetic diseases. In consequence, protein turnover of WT-TRPM4 and TRPM4 variants overexpressed in HEK293 cells was analyzed using cycloheximide, an inhibitor of protein biosynthesis. Upon addition of cycloheximide, WT-TRPM4 decayed with a half-life of ~20 h, while loss-of-expression variants showed a ~30% increase in degradation rate, with a half-life close to 12 h. Together, the gain-of-expression variant showed a higher stability and a doubled half-life compared to WT-TRPM4. In conclusion, decreased or increased protein expression of several TRPM4 variants linked to cardiac conduction disorders or ventricular arrhythmias were found to be caused by altered TRPM4 half-life compared to the WT form.

5.
Br J Pharmacol ; 175(12): 2504-2519, 2018 06.
Article in English | MEDLINE | ID: mdl-29579323

ABSTRACT

BACKGROUND AND PURPOSE: TRPM4 is a calcium-activated non-selective cation channel expressed in many tissues and implicated in several diseases, and has not yet been validated as a therapeutic target due to the lack of potent and selective inhibitors. We sought to discover a novel series of small-molecule inhibitors by combining in silico methods and cell-based screening assay, with sub-micromolar potency and improved selectivity from previously reported TRPM4 inhibitors. EXPERIMENTAL APPROACH: Here, we developed a high throughput screening compatible assay to record TRPM4-mediated Na+ influx in cells using a Na+ -sensitive dye and used this assay to screen a small set of compounds selected by ligand-based virtual screening using previously known weakly active and non-selective TRPM4 inhibitors as seed molecules. Conventional electrophysiological methods were used to validate the potency and selectivity of the hit compounds in HEK293 cells overexpressing TRPM4 and in endogenously expressing prostate cancer cell line LNCaP. Chemical chaperone property of compound 5 was studied using Western blots and electrophysiology experiments. KEY RESULTS: A series of halogenated anthranilic amides were identified with TRPM4 inhibitory properties with sub-micromolar potency and adequate selectivity. We also showed for the first time that a naturally occurring variant of TRPM4, which displays loss-of-expression and function, is rescued by the most promising compound 5 identified in this study. CONCLUSIONS AND IMPLICATIONS: The discovery of compound 5, a potent and selective inhibitor of TRPM4 with an additional chemical chaperone feature, revealed new opportunities for studying the role of TRPM4 in human diseases and developing clinical drug candidates.


Subject(s)
Amides/pharmacology , Small Molecule Libraries/pharmacology , TRPM Cation Channels/antagonists & inhibitors , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , HeLa Cells , High-Throughput Screening Assays , Humans , Ligands , Mice , RAW 264.7 Cells , Small Molecule Libraries/chemistry , Structure-Activity Relationship , TRPM Cation Channels/metabolism
7.
J Am Heart Assoc ; 5(5)2016 05 20.
Article in English | MEDLINE | ID: mdl-27207958

ABSTRACT

BACKGROUND: Transient receptor potential melastatin member 4 (TRPM4) is a nonselective cation channel. TRPM4 mutations have been linked to cardiac conduction disease and Brugada syndrome. The mechanisms underlying TRPM4-dependent conduction slowing are not fully understood. The aim of this study was to characterize TRPM4 genetic variants found in patients with congenital or childhood atrioventricular block. METHODS AND RESULTS: Ninety-one patients with congenital or childhood atrioventricular block were screened for candidate genes. Five rare TRPM4 genetic variants were identified and investigated. The variants were expressed heterologously in HEK293 cells. Two of the variants, A432T and A432T/G582S, showed decreased expression of the protein at the cell membrane; inversely, the G582S variant showed increased expression. Further functional characterization of these variants using whole-cell patch-clamp configuration showed a loss of function and a gain of function, respectively. We hypothesized that the observed decrease in expression was caused by a folding and trafficking defect. This was supported by the observation that incubation of these variants at lower temperature partially rescued their expression and function. Previous studies have suggested that altered SUMOylation of TRPM4 may cause a gain of function; however, we did not find any evidence that supports SUMOylation as being directly involved for the gain-of-function variant. CONCLUSIONS: This study underpins the role of TRPM4 in the cardiac conduction system. The loss-of-function variants A432T/G582S found in 2 unrelated patients with atrioventricular block are most likely caused by misfolding-dependent altered trafficking. The ability to rescue this variant with lower temperature may provide a novel use of pharmacological chaperones in treatment strategies.


Subject(s)
Atrioventricular Block/genetics , Protein Folding , Protein Transport/genetics , Proteostasis Deficiencies/genetics , TRPM Cation Channels/genetics , Atrioventricular Block/physiopathology , Atrioventricular Block/therapy , Cardiac Pacing, Artificial , Cell Membrane/metabolism , Child , Child, Preschool , Female , Genetic Variation , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Pacemaker, Artificial , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , TRPM Cation Channels/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL